The distribution of 20 variable regions resulting from insertiondeletion events in the genomes of the tubercle bacilli has been evaluated in a total of 100 strains of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, and Mycobacterium bovis. This approach showed that the majority of these polymorphisms did not occur independently in the different strains of the M. tuberculosis complex but, rather, resulted from ancient, irreversible genetic events in common progenitor strains. Based on the presence or absence of an M. tuberculosis specific deletion (TbD1), M. tuberculosis strains can be divided into ancestral and ''modern'' strains, the latter comprising representatives of major epidemics like the Beijing, Haarlem, and African M. tuberculosis clusters. Furthermore, successive loss of DNA, reflected by region of difference 9 and other subsequent deletions, was identified for an evolutionary lineage represented by M. africanum, M. microti, and M. bovis that diverged from the progenitor of the present M. tuberculosis strains before TbD1 occurred. These findings contradict the often-presented hypothesis that M. tuberculosis, the etiological agent of human tuberculosis evolved from M. bovis, the agent of bovine disease. M. canettii and ancestral M. tuberculosis strains lack none of these deleted regions, and, therefore, seem to be direct descendants of tubercle bacilli that existed before the M. africanum3 M. bovis lineage separated from the M. tuberculosis lineage. This observation suggests that the common ancestor of the tubercle bacilli resembled M. tuberculosis or M. canettii and could well have been a human pathogen already.evolution ͉ diagnostic ͉ identification T he mycobacteria grouped in the Mycobacterium tuberculosis complex are characterized by 99.9% similarity at the nucleotide level and identical 16S rRNA sequences (1, 2) but differ widely in terms of their host tropisms, phenotypes, and pathogenicity. Assuming that they all are derived from a common ancestor, it is intriguing that some are exclusively human (M. tuberculosis, Mycobacterium africanum, Mycobacterium canettii) or rodent pathogens (Mycobacterium microti), whereas others have a wide host spectrum (Mycobacterium bovis). What was the genetic organization of the last common ancestor of the tubercle bacilli, and in which host did it live? Which genetic events may have contributed to the fact that the host spectrum is so different and often specific? Where and when did M. tuberculosis evolve? Answers to these questions are important for a better understanding of the pathogenicity and the global epidemiology of tuberculosis and may help to anticipate future trends in the spread of the disease.Because of the unusually high degree of conservation in their housekeeping genes, it has been suggested that the members of the M. tuberculosis complex underwent an evolutionary bottleneck at the time of speciation, estimated to have occurred roughly 15,000-20,000 years ago (2). Also, it has been speculated tha...
To understand the evolution, attenuation, and variable protective efficacy of bacillus Calmette-Gué rin (BCG) vaccines, Mycobacterium bovis BCG Pasteur 1173P2 has been subjected to comparative genome and transcriptome analysis. The 4,374,522-bp genome contains 3,954 protein-coding genes, 58 of which are present in two copies as a result of two independent tandem duplications, DU1 and DU2. DU1 is restricted to BCG Pasteur, although four forms of DU2 exist; DU2-I is confined to early BCG vaccines, like BCG Japan, whereas DU2-III and DU2-IV occur in the late vaccines. The glycerol-3-phosphate dehydrogenase gene, glpD2, is one of only three genes common to all four DU2 variants, implying that BCG requires higher levels of this enzyme to grow on glycerol. Further amplification of the DU2 region is ongoing, even within vaccine preparations used to immunize humans. An evolutionary scheme for BCG vaccines was established by analyzing DU2 and other markers. Lesions in genes encoding -factors and pleiotropic transcriptional regulators, like PhoR and Crp, were also uncovered in various BCG strains; together with gene amplification, these affect gene expression levels, immunogenicity, and, possibly, protection against tuberculosis. Furthermore, the combined findings suggest that early BCG vaccines may even be superior to the later ones that are more widely used.glycerol metabolism ͉ live vaccines ͉ tandem duplications ͉ tuberculosis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.