The distribution of 20 variable regions resulting from insertiondeletion events in the genomes of the tubercle bacilli has been evaluated in a total of 100 strains of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, and Mycobacterium bovis. This approach showed that the majority of these polymorphisms did not occur independently in the different strains of the M. tuberculosis complex but, rather, resulted from ancient, irreversible genetic events in common progenitor strains. Based on the presence or absence of an M. tuberculosis specific deletion (TbD1), M. tuberculosis strains can be divided into ancestral and ''modern'' strains, the latter comprising representatives of major epidemics like the Beijing, Haarlem, and African M. tuberculosis clusters. Furthermore, successive loss of DNA, reflected by region of difference 9 and other subsequent deletions, was identified for an evolutionary lineage represented by M. africanum, M. microti, and M. bovis that diverged from the progenitor of the present M. tuberculosis strains before TbD1 occurred. These findings contradict the often-presented hypothesis that M. tuberculosis, the etiological agent of human tuberculosis evolved from M. bovis, the agent of bovine disease. M. canettii and ancestral M. tuberculosis strains lack none of these deleted regions, and, therefore, seem to be direct descendants of tubercle bacilli that existed before the M. africanum3 M. bovis lineage separated from the M. tuberculosis lineage. This observation suggests that the common ancestor of the tubercle bacilli resembled M. tuberculosis or M. canettii and could well have been a human pathogen already.evolution ͉ diagnostic ͉ identification T he mycobacteria grouped in the Mycobacterium tuberculosis complex are characterized by 99.9% similarity at the nucleotide level and identical 16S rRNA sequences (1, 2) but differ widely in terms of their host tropisms, phenotypes, and pathogenicity. Assuming that they all are derived from a common ancestor, it is intriguing that some are exclusively human (M. tuberculosis, Mycobacterium africanum, Mycobacterium canettii) or rodent pathogens (Mycobacterium microti), whereas others have a wide host spectrum (Mycobacterium bovis). What was the genetic organization of the last common ancestor of the tubercle bacilli, and in which host did it live? Which genetic events may have contributed to the fact that the host spectrum is so different and often specific? Where and when did M. tuberculosis evolve? Answers to these questions are important for a better understanding of the pathogenicity and the global epidemiology of tuberculosis and may help to anticipate future trends in the spread of the disease.Because of the unusually high degree of conservation in their housekeeping genes, it has been suggested that the members of the M. tuberculosis complex underwent an evolutionary bottleneck at the time of speciation, estimated to have occurred roughly 15,000-20,000 years ago (2). Also, it has been speculated tha...
New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.
Although large human populations have been safely immunized against tuberculosis with two live vaccines, Mycobacterium bovis BCG or Mycobacterium microti, the vole bacillus, the molecular basis for the avirulence of these vaccine strains remains unknown. Comparative genomics has identified a series of chromosomal deletions common to both virulent and avirulent species but only a single locus, RD1, that has been deleted from M. bovis BCG and M. microti. Restoration of RD1, by gene knock-in, resulted in a marked change in colonial morphology towards that of virulent tubercle bacilli. Three RD1-encoded proteins were localized in the cell wall, and two of them, the immunodominant T-cell antigens ESAT-6 and CFP-10, were also found in culture supernatants. The BCG::RD1 and M. microti::RD1 knock-ins grew more vigorously than controls in immunodeficient mice, inducing extensive splenomegaly and granuloma formation. Increased persistence and partial reversal of attenuation were observed when immunocompetent mice were infected with the BCG::RD1 knock-in, whereas BCG controls were cleared. Knocking-in five other RD loci did not affect the virulence of BCG. This study describes a genetic lesion that contributes to safety and opens new avenues for vaccine development.
Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis. Despite significant advances in identifying new immunological parameters associated with mycobacterial disease, some basic questions on the intracellular fate of the causative agent of human tuberculosis in antigen-presenting cells are still under debate. To get novel insights into this matter, we used a single-cell fluorescence resonance energy transfer (FRET)-based method to investigate the potential cytosolic access of M. tuberculosis and the resulting cellular consequences in an unbiased, quantitative way. Analysis of thousands of THP-1 macrophages infected with selected wild-type or mutant strains of the M. tuberculosis complex unambiguously showed that M. tuberculosis induced a change in the FRET signal after 3 to 4 days of infection, indicating phagolysosomal rupture and cytosolic access. These effects were not seen for the strains M. tuberculosisΔRD1 or BCG, both lacking the ESX-1 secreted protein ESAT-6, which reportedly shows membrane-lysing properties. Complementation of these strains with the ESX-1 secretion system of M. tuberculosis restored the ability to cause phagolysosomal rupture. In addition, control experiments with the fish pathogen Mycobacterium marinum showed phagolysosomal translocation only for ESX-1 intact strains, further validating our experimental approach. Most importantly, for M. tuberculosis as well as for M. marinum we observed that phagolysosomal rupture was followed by necrotic cell death of the infected macrophages, whereas ESX-1 deletion- or truncation-mutants that remained enclosed within phagolysosomal compartments did not induce such cytotoxicity. Hence, we provide a novel mechanism how ESX-1 competent, virulent M. tuberculosis and M. marinum strains induce host cell death and thereby escape innate host defenses and favor their spread to new cells. In this respect, our results also open new research directions in relation with the extracellular localization of M. tuberculosis inside necrotic lesions that can now be tackled from a completely new perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.