Streptococcus suis is one of the most important bacterial pathogens in the porcine industry and also a zoonotic agent. Serotype 9 is becoming one of the most prevalent serotypes within the S. suis population in certain European countries. In the present study, serotype 9 strains isolated from a country where infection due to this serotype is endemic (Spain), were compared to those recovered from Canada, where this serotype is rarely isolated from diseased pigs. For comparison purposes, strains from Brazil and the only strain isolated from a human case, in Thailand, were also incorporated. Firstly, sequence types (STs) were obtained followed by detection of putative virulence factors. Phylogenetic trees were constructed using the non-recombinant single nucleotide polymorphisms from core genomes of tested strains. Most Spanish strains were either ST123 or ST125, whereas Canadian strains were highly heterogeneous. However, the distribution of putative virulence factors was similar in both groups of strains. The fact that ST16 strains harbored more putative virulence genes and shared greater similarity with the genome of human serotype 2 strains suggests that they present a higher zoonotic and virulence potential than those from Canada and Spain. More than 80% of the strains included in this study carried genes associated with resistance to tetracycline, lincosamides and macrolides. Serotype 9 strains may be nearly 400 years old and have evolved in parallel into 2 lineages. The rapid population expansion of dominant lineage 1 occurred within the last 40 years probably due to the rapid development of the porcine industry.Electronic supplementary materialThe online version of this article (10.1186/s13567-017-0498-2) contains supplementary material, which is available to authorized users.
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death of the host. A better understanding of the underlying mechanisms involved in the control of inflammation and subsequent bacterial burden could help to develop control measures for this important porcine and zoonotic agent.
With the advent of antiretroviral therapy (ART), HIV-infected individuals are now living longer and healthier lives. However, ART does not completely restore health and treated individuals are experiencing increased rates of noncommunicable diseases such as dyslipidemia, insulin resistance, type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. While it is well known that persistent immune activation and inflammation contribute to the development of these comorbid diseases, the mechanisms underlying this chronic activation remain incompletely understood. In this review, we will discuss emerging evidence that suggests that alterations in cellular metabolism may play a central role in driving this immune dysfunction in HIV patients on ART.
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. However, serotype 2 strains are heterogeneous, composed of a multitude of sequence types (STs) whose distribution greatly varies worldwide. Of the virulence factors presently described for S. suis, the capsular polysaccharide (CPS) is a critical factor implicated in a multitude of functions, including in impairment of phagocytosis and innate immune cell activation by masking underlying bacterial components. However, these roles have been described using Eurasian ST1 and ST7 strains, which greatly differ from North American ST25 strains. Consequently, the capacity of the CPS to mask surface antigens and putative virulence factors in non-Eurasian strains remains unknown. Herein, the role of the S. suis serotype 2 CPS of a prototype intermediate virulent North American ST25 strain, in comparison with that of a virulent European ST1 strain, with regards to interactions with dendritic cells, as well as virulence during the systemic phase of infection, was evaluated. Results demonstrated that the CPS remains critical for virulence and development of clinical disease regardless of strain background, due to its requirement for survival in blood. However, its role in the interactions with dendritic cells is strain-dependent. Consequently, certain key characteristics associated with the CPS are not necessarily applicable to all S. suis serotype 2 strains. This indicates that though certain factors may be important for S. suis serotype 2 virulence, strain background could be as determining, reiterating the need in using strains from varying backgrounds in order to better characterize the S. suis pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.