Previous work on transverse impact of single textile fibers is reviewed and extended to model orthogonal weaves in which fiber crossovers are simplified as pin. joints. A dynamic finite-element computer technique previously developed for single fibers is extended to model the woven panel, and this method is shown to produce results which are in sub stantial agreement with experimental observations of ballistic nylon panels. Impact of a woven textile panel is shown to exhibit substantial differences compared to the equivalent impact of a single fiber, primarily in that the propagating strain waves experience pervasive and complex interactions due to the influence of the fiber crossovers. The vast majority of ballistic energy is seen to be deposited in the orthogonal fibers passing through the impact point, while the other fibers are essentially ineffective, which suggests possible improvements in the design of textile structures intended for dynamic impact applications.
The compressive stiffness of articular cartilage was examined in oscillatory confined compression over a wide frequency range including high frequencies relevant to impact loading. Nonlinear behavior was found when the imposed sinusoidal compression amplitude exceeded a threshold value that depended on frequency. Linear behavior was attained only by suitable control of the compression amplitude. This was enabled by real time Fourier analysis of data which provided an accurate assessment of the extent of nonlinearity. For linear viscoelastic behavior, a stiffness could be defined in the usual sense. The dependence of the stiffness on ionic strength and proteoglycan content showed that electrostatic forces between matrix charge groups contribute significantly to cartilage's compressive stiffness over the 0.001 to 20 Hz frequency range. Sinusoidal streaming potentials were also generated by oscillatory compression. A theory relating the streaming potential field to the fluid velocity field is derived and used to interpret the data. The observed magnitude of the streaming potential suggests that interstitial fluid flow is significant to cartilage behavior over the entire frequency range. The use of simultaneous streaming potential and stiffness data with an appropriate theory appears to be an important tool for assessing the relative contribution of fluid flow, intrinsic matrix viscoelasticity, or other molecular mechanisms to energy dissipation in cartilage. This method is applicable in general to hydrated, charged polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.