Abstract5′ mediated cytoplasmic RNA decay is a conserved cellular process in eukaryotes. While the functions of the structured core domains in this pathway are well-studied, the role of abundant intrinsically disordered regions (IDRs) is lacking. Here we reconstitute the Dcp1:Dcp2 complex containing a portion of the disordered C-terminus and show its activity is autoinhibited by linear interaction motifs. Enhancers of decapping (Edc) 1 and 3 cooperate to activate decapping by different mechanisms: Edc3 alleviates autoinhibition by binding IDRs and destabilizing an inactive form of the enzyme, whereas Edc1 stabilizes the transition state for catalysis. Both activators are required to fully stimulate an autoinhibited Dcp1:Dcp2 as Edc1 alone cannot overcome the decrease in activity attributed to the C-terminal extension. Our data provide a mechanistic framework for combinatorial control of decapping by protein cofactors, a principle that is likely conserved in multiple 5′ mRNA decay pathways.
Changes in the 5' leader of an mRNA can have profound effects on its translational efficiency with little effect on abundance. Sequencing-based methods to accurately map the 5' leader by identifying the first transcribed nucleotide rely on enzymatic removal of the 5' eukaryotic cap structure by tobacco acid pyrophosphatase (TAP). However, commercial TAP production has been problematic and has now been discontinued. RppH, a bacterial enzyme that can also cleave the 5' cap, and Cap-Clip, a plant-derived enzyme, have been marketed as TAP replacements. We have engineered a Edc1-fused Dcp1-Dcp2 decapping enzyme that functions as a superior TAP replacement. It can be purified from overexpression in high yields using standard biochemical methods. This constitutively active enzyme is four orders of magnitude more catalytically efficient than RppH at 5' cap removal, compares favorably to Cap-Clip, and the 5' monophosphorylated RNA product is suitable for standard RNA cloning methods. This engineered enzyme is a better replacement for TAP treatment than the current marketed use of RppH and can be produced cost-effectively in a general laboratory setting, unlike Cap-Clip.
ABSTRACT5' mediated cytoplasmic RNA decay is a conserved cellular process in eukaryotes. While the functions of the structured core domains in this pathway are understood, the role of abundant intrinsically disordered regions (IDRs) is lacking. Here we reconstitute the Dcp1:Dcp2 complex containing a portion of the disordered C-terminus and show its activity is autoinhibited by linear interaction motifs. Enhancers of decapping (Edc) 1 and 3 cooperate to activate decapping by different mechanisms: Edc3 alleviates autoinhibition by binding IDRs and destabilizing an inactive form of the enzyme, whereas Edc1 stabilizes the transition state for catalysis. Both activators are required to fully stimulate an autoinhibited Dcp1:Dcp2 as Edc1 alone cannot overcome the decrease in activity attributed to the C-terminal extension. Our data provide a mechanistic framework for combinatorial control of decapping by protein cofactors, a principle that is likely conserved in multiple 5' mRNA decay pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.