This work emphasizes the importance of understanding the phenomena of dendrite formation occurring in rechargeable metal batteries. These batteries can reach quite a high specific energy but have inherently short life due to dendritic growth. The current work implements different tomographic methods to visualize dendritic growth in real time and to quantify various dendrite characteristics at submicron and nanoscale levels. The methodology presented here can be also extended to study the growth of other metal dendrites in aqueous and nonaqueous batteries.
The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at sub-micron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.