The traditional requirement for clean rooms and specialized skills has inhibited many biologists from pursuing new microfluidic innovations. Makerspaces provide a growing alternative to clean rooms: they provide low-cost access to fabrication equipment such as laser cutters, plotter cutters, and 3D printers; use commercially available materials; and attract a diverse community of product designers. This Opinion discusses the materials, tools, and building methodologies particularly suited for developing novel microfluidic devices in these spaces, with insight into biological applications and leveraging the maker community. The lower barrier to access of makerspaces ameliorates the otherwise poor accessibility and scalability of microfluidic prototyping.
The ability to synthesize custom de novo DNA constructs rapidly, accurately and inexpensively is highly desired by researchers, as synthetic genes and longer DNA constructs are enabling to numerous powerful applications in both traditional molecular biology and the emerging field of synthetic biology. However, the current cost of de novo synthesis—driven largely by reagent and handling costs—is a significant barrier to the widespread availability of such technology. In this work, we demonstrate, to our knowledge, the first gene synthesis in a microfluidic environment. The use of microfluidic technology greatly reduces reaction volumes and the corresponding reagent and handling costs. Additionally, microfluidic technology enables large numbers of complex reactions to be performed in parallel. Here, we report the fabrication of a multi-chamber microfluidic device and its use in carrying out the syntheses of several DNA constructs. Genes up to 1 kb in length were synthesized in parallel at minute starting oligonucleotide concentrations (10–25 nM) in four 500 nl reactors. Such volumes are one to two orders of magnitude lower than those utilized in conventional gene synthesis. The identity of all target genes was verified by sequencing, and the resultant error rate was determined to be 1 per 560 bases.
In the version of this article initially published, the wrong Creative Commons Attribution license (cc-by-nc rather than cc-by) was inserted. The error has been corrected in the HTML and PDF versions of the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.