Matrix diffusion can attenuate the rate of plume migration in fractured bedrock relative to the rate of ground water flow for both conservative and nonconservative solutes of interest. In a system of parallel, equally spaced constant aperture fractures subject to steady-state ground water flow and an infinite source width, the degree of plume attenuation increases with time and travel distance, eventually reaching an asymptotic level. The asymptotic degree of plume attenuation in the absence of degradation can be predicted by a plume attenuation factor, beta, which is readily estimated as R' (phi(m)/phi(f)), where R' is the retardation factor in the matrix, phi(m) is the matrix porosity, and phi(f) is the fracture porosity. This dual-porosity relationship can also be thought of as the ratio of primary to secondary porosity. Beta represents the rate of ground water flow in fractures relative to the rate of plume advance. For the conditions examined in this study, beta increases with greater matrix porosity, greater matrix fraction organic carbon, larger fracture spacing, and smaller fracture aperture. These concepts are illustrated using a case study where dense nonaqueous phase liquid in fractured sandstone produced a dissolved-phase trichloroethylene (TCE) plume approximately 300 m in length. Transport parameters such as matrix porosity, fracture porosity, hydraulic gradient, and the matrix retardation factor were characterized at the site through field investigations. In the fractured sandstone bedrock examined in this study, the asymptotic plume attenuation factors (beta values) for conservative and nonconservative solutes (i.e., chloride and TCE) were predicted to be approximately 800 and 12,210, respectively. Quantitative analyses demonstrate that a porous media (single-porosity) solute transport model is not appropriate for simulating contaminant transport in fractured sandstone where matrix diffusion occurs. Rather, simulations need to be conducted with either a discrete fracture model that explicitly incorporates matrix diffusion, or a dual-continuum model that accounts for mass transfer between mobile and immobile zones. Simulations also demonstrate that back diffusion from the matrix to fractures will likely be the time-limiting factor in reaching ground water cleanup goals in some fractured bedrock environments.
During the past decade or longer, large amounts of data on the concentrations of dissolved aromatic hydrocarbons have been obtained from routine monitoring of leaky underground storage tanks (USTs). Commonly, aromatic hydrocarbon concentration data is interpreted only within the context of regulatory maximum allowable concentration levels. We show in this paper how ternary diagrams can clearly characterize the physical and chemical controls governing the fate and transport of aromatic hydrocarbons in ground water from routine monitoring data. The results of type mathematical modeling experiments for BTX solute transport show that changes in BTX concentrations, when plotted as proportions on ternary diagrams, form clear “trajectories” documenting major attenuation or transport processes. For example, BTX concentrations affected by biodegradation form a trajectory from the source BTX location on the ternary diagram to the benzene apex. In contrast, BTX concentrations affected by volatilization form a trajectory trending from the source to the xylene apex. Ternary diagrams are easy and effective tools to determine from routine monitoring data (1) whether proposed natural attentuation processes are in fact present, and (2) the efficiency of different remediation efforts used to clean up UST sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.