There is wide agreement that corticotropin-releasing hormone (CRH) systems within the brain are activated by stressful stimuli. There is also mounting evidence for the role of bombesin (BN)-like peptides in the mediation of the stress response. To date, however, the extent to which other stimuli increase the activity of these peptidergic systems has received little attention. In the present investigation we validated and used in vivo microdialysis sampling followed by ex vivo radioimmunoassays to monitor the release of CRH and BN-like peptides during appetitive (food intake) and stressful (restraint) events. It is demonstrated for the first time that the in vivo release of CRH and BN-like peptides at the central nucleus of the amygdala was markedly increased by both stressor exposure and food ingestion. In fact, the meal-elicited rise of CRH release was as great as that associated with 20 min of restraint stress. Paralleling these findings, circulating ACTH and corticosterone levels were also increased in response to both food intake and restraint. Contrary to the current views, these results indicate that either food ingestion is interpreted as a "stressful" event by certain neural circuits involving the central amygdala or that the CRH- and BN-related peptidergic systems may serve a much broader role than previously envisioned. Rather than evoking feelings of fear and anxiety, these systems may serve to draw attention to events or cues of biological significance, such as those associated with food availability as well as those posing a threat to survival.
Health Canada, in collaboration with Statistics Canada, and other external experts, conducted the Community Noise and Health Study to better understand the impacts of wind turbine noise (WTN) on health and well-being. A cross-sectional epidemiological study was carried out between May and September 2013 in southwestern Ontario and Prince Edward Island on 1238 randomly selected participants (606 males, 632 females) aged 18-79 years, living between 0.25 and 11.22 km from operational wind turbines. Calculated outdoor WTN levels at the dwelling reached 46 dBA. Response rate was 78.9% and did not significantly differ across sample strata. Self-reported health effects (e.g., migraines, tinnitus, dizziness, etc.), sleep disturbance, sleep disorders, quality of life, and perceived stress were not related to WTN levels. Visual and auditory perception of wind turbines as reported by respondents increased significantly with increasing WTN levels as did high annoyance toward several wind turbine features, including the following: noise, blinking lights, shadow flicker, visual impacts, and vibrations. Concern for physical safety and closing bedroom windows to reduce WTN during sleep also increased with increasing WTN levels. Other sample characteristics are discussed in relation to WTN levels. Beyond annoyance, results do not support an association between exposure to WTN up to 46 dBA and the evaluated health-related endpoints.
Objective:The aim of this study was to estimate the prevalence of hearing loss (HL), self-reported occupational noise exposure, and hearing protection usage among Canadians.Methods:In-person household interviews were conducted with 3666 participants, aged 16 to 79 years (1811 males) with 94% completing audiometry and distortion-product otoacoustic emission (DPOAE) evaluations. Occupational noise exposure was defined as hazardous when communicating with coworkers at an arm's length distance required speaking in a raised voice.Results:An estimated 42% of respondents reported hazardous occupational noise exposure; 10 years or more was associated with HL regardless of age, sex or education. Absent DPOAEs, tinnitus, and the Wilson audiometric notch were significantly more prevalent in hazardous workplace noise-exposed workers than in nonexposed. When mandatory, 80% reported wearing hearing protection.Conclusions:These findings are consistent with other industrialized countries, underscoring the need for ongoing awareness of noise-induced occupational HL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.