The FootFall Planning System is a ground-based planning and decision support system designed to facilitate the control of walking activities for the ATHLETE (All-Terrain HexLimbed Extra-Terrestrial Explorer) family of robots. ATHLETE was developed at NASA's Jet Propulsion Laboratory (JPL) and is a large six-legged robot designed to serve multiple roles during manned and unmanned missions to the Moon; its roles include transportation, construction and exploration. Over the four years from 2006 through 2010 the FootFall Planning System was developed and adapted to two generations of the ATHLETE robots and tested at two analog field sites (the Human Robotic Systems Project's Integrated Field Test at Moses Lake, Washington, June 2008, and the Desert Research and Technology Studies (D-RATS), held at Black Point Lava Flow in Arizona, September 2010). Having 42 degrees of kinematic freedom, standing to a maximum height of just over 4 meters, and having a payload capacity of 450 kg in Earth gravity, the current version of the ATHLETE robot is a uniquely complex system. A central challenge to this work was the compliance of the high-DOF (Degree Of Freedom) robot, especially the compliance of the wheels, which affected many aspects of statically-stable walking. This paper will review the history of the development of the FootFall system, sharing design decisions, field test experiences, and the lessons learned concerning compliance and self-awareness.
Abstract-In this paper, we present an overview of the NASA Human Exploration Telerobotics (HET) project. The purpose of HET is to demonstrate and assess how telerobotics can improve the efficiency, effectiveness, and productivity of human exploration missions. To do this, we are developing and testing advanced robots remotely operated by ground controllers on Earth and by crew on the International Space Station. The outcome of these tests will provide insight into the requirements, benefits, limitations, costs and risks of integrating advanced telerobotics into future human missions. In addition, the engineering data acquired during these tests will inform the design of future telerobotic systems.
The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) as part of NASA's Exploration Systems Mission Directorate, Exploration Technology Development Program (ETDP). The program develops technologies for surface mobility and equipment handling, human-system interaction, and lunar surface system repair, and constructs dexterous robots and autonomous rovers that can drive over rough terrain and help crew explore, assemble, and maintain a lunar outpost. ETDP sponsors a series of field tests at lunar analog test sites where prototype robots can operate in ways that simulate lunar surface conditions. In this paper, we describe the lessons learned about ATHLETE operations at the most recent lunar analog field test in June 2008 at Moses Lake Sand Dunes, Washington. The Moses Lake field test was structured as a series of "acts" which correspond to unpiloted and piloted missions to the lunar surface in the 2019 to 2022 timeframe. The field test took place over a period of two weeks and involved several robots from various NASA field centers, including the Chariot lunar truck from Johnson Space Center, the K10 planetary rover from Ames Research Center, and ATHLETE from JPL. Lessons learned from the Moses Lake field test will be incorporated into the evolving design of the ATHLETE operations system, and will be tested at subsequent field trials.
Following the successful dynamic planning and implementation of IRAC Warm Instrument Characterization activities, transition to Spitzer Warm Mission operations has gone smoothly. Operation teams procedures and processes required minimal adaptation and the overall composition of the Mission Operation System retained the same functionality it had during the Cryogenic Mission. While the warm mission scheduling has been simplified because all observations are now being made with a single instrument, several other differences have increased the complexity. The bulk of the observations executed to date have been from ten large Exploration Science programs that, combined, have more complex constraints, more observing requests, and more exo-planet observations with durations of up to 145 hours. Communication with the observatory is also becoming more challenging as the Spitzer DSN antenna allocations have been reduced from two tracking passes per day to a single pass impacting both uplink and downlink activities. While IRAC is now operating with only two channels, the data collection rate is roughly 60% of the four-channel rate leaving a somewhat higher average volume collected between the less frequent passes. Also, the maximum downlink data rate is decreasing as the distance to Spitzer increases requiring longer passes. Nevertheless, with well over 90% of the time spent on science observations, efficiency has equaled or exceeded that achieved during the cryogenic mission.
We have developed a new operator interface system for high-DoF articulated robots based on the idea of allowing the operator to extend the robot's actual kinematics with virtual articulations. These virtual links and joints can model both primary task DoF and constraints on whole-robot coordinated motion. Unlike other methods, our approach can be applied to robots and tasks of arbitrary kinematic topology, and allows specifying motion with a scalable level of detail. We present hardware results where NASA/JPL's All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) executes previously challenging inspection and manipulation motions involving coordinated motion of all 36 of the robot's joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.