We investigate the properties of chain recurrent, chain transitive, and chain mixing maps (generalizations of the wellknown notions of non-wandering, topologically transitive, and topologically mixing maps). We describe the structure of chain transitive maps. These notions of recurrence are defined using ε-chains, and the minimal lengths of these ε-chains give a way to measure recurrence time (chain recurrence and chain mixing times). We give upper and lower bounds for these recurrence times and relate the chain mixing time to topological entropy.
Abstract. In this paper we introduce filtration pairs for an isolated invariant set of continuous maps. We prove the existence of filtration pairs and show that, up to shift equivalence, the induced map on the corresponding pointed space is an invariant of the isolated invariant set. Moreover, the maps defining the shift equivalence can be chosen canonically. Last, we define partially ordered Morse decompositions and prove the existence of Morse set filtrations for such decompositions.
We introduce topological definitions of expansivity, shadowing, and chain recurrence for homeomorphisms. They generalize the usual definitions for metric spaces. We prove various theorems about topologically Anosov homeomorphisms (maps that are expansive and have the shadowing property) on noncompact and non-metrizable spaces that generalize theorems for such homeomorphisms on compact metric spaces. The main result is a generalization of Smale's spectral decomposition theorem to topologically Anosov homeomorphisms on first countable locally compact paracompact Hausdorff spaces.
We show that a continuous map or a continuous flow on R n with a certain recurrence relation must have a fixed point. Specifically, if there is a compact set W with the property that the forward orbit of every point in R n intersects W then there is a fixed point in W . Consequently, if the omega limit set of every point is nonempty and uniformly bounded then there is a fixed point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.