Prasugrel and clopidogrel inhibit platelet aggregation through active metabolite formation. Prasugrel's active metabolite (R-138727) is formed primarily by cytochrome P450 (CYP) 3A and CYP2B6, with roles for CYP2C9 and CYP2C19. Clopidogrel's activation involves two sequential steps by CYP3A, CYP1A2, CYP2C9, CYP2C19, and/or CYP2B6. In a randomized crossover study, healthy subjects received a loading dose (LD) of prasugrel (60 mg) or clopidogrel (300 mg), followed by five daily maintenance doses (MDs) (15 and 75 mg, respectively) with or without the potent CYP3A inhibitor ketoconazole (400 mg/day). Subjects had a 2-week washout between periods. Ketoconazole decreased R-138727 and clopidogrel active metabolite Cmax (maximum plasma concentration) 34-61% after prasugrel and clopidogrel dosing. Ketoconazole did not affect R-138727 exposure or prasugrel's inhibition of platelet aggregation (IPA). Ketoconazole decreased clopidogrel's active metabolite AUC0-24 (area under the concentration-time curve to 24 h postdose) 22% (LD) to 29% (MD) and reduced IPA 28% (LD) to 33% (MD). We conclude that CYP3A4 and CYP3A5 inhibition by ketoconazole affects formation of clopidogrel's but not prasugrel's active metabolite. The decreased formation of clopidogrel's active metabolite is associated with reduced IPA.
Prasugrel and clopidogrel, thienopyridine prodrugs, are each metabolized to an active metabolite that inhibits the platelet P2Y(12) ADP receptor. In this open-label, 4-period crossover study, the effects of the proton pump inhibitor lansoprazole on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel were assessed in healthy subjects given single doses of prasugrel 60 mg and clopidogrel 300 mg with and without concurrent lansoprazole 30 mg qd. C(max) and AUC(0-tlast) of prasugrel's active metabolite, R-138727, and clopidogrel's inactive carboxylic acid metabolite, SR26334, were assessed. Inhibition of platelet aggregation (IPA) was measured by turbidimetric aggregometry 4 to 24 hours after each treatment. Lansoprazole (1) decreased R-138727 AUC(0-tlast) and C(max) by 13% and 29%, respectively, but did not affect IPA after the prasugrel dose, and (2) did not affect SR62334 exposure but tended to lower IPA after a clopidogrel dose. A retrospective tertile analysis showed in subjects with high IPA after a clopidogrel dose alone that lansoprazole decreased IPA, whereas IPA was unaffected in these same subjects after a prasugrel dose. The overall data suggest that a prasugrel dose adjustment is not likely warranted in an individual taking prasugrel with a proton pump inhibitor such as lansoprazole.
Prasugrel pharmacodynamics and pharmacokinetics after a 60-mg loading dose (LD) and daily 10-mg maintenance doses (MD) were compared in a 3-way crossover study to clopidogrel 600-mg/75-mg and 300-mg/75-mg LD/MD in 41 healthy, aspirin-free subjects. Each LD was followed by 7 days of daily MD and a 14-day washout period. Inhibition of platelet aggregation (IPA) was assessed by turbidometric aggregometry (20 and 5 microM ADP). Prasugrel 60-mg achieved higher mean IPA (54%) 30 minutes post-LD than clopidogrel 300-mg (3%) or 600-mg (6%) (P < 0.001) and greater IPA by 1 hour (82%) and 2 hours (91%) than the 6-hour IPA for clopidogrel 300-mg (51%) or 600-mg (69%) (P < 0.01). During MD, IPA for prasugrel 10-mg (78%) exceeded that of clopidogrel (300-mg/75-mg, 56%; 600-mg/75-mg, 52%; P < 0.001). Active metabolite area under the concentration-time curve (AUC0-tlast) after prasugrel 60-mg (594 ng.hr/mL) was 2.2 times that after clopidogrel 600-mg. Prasugrel active metabolite AUC0-tlast was consistent with dose-proportionality from 10-mg to 60-mg, while clopidogrel active metabolite AUC0-tlast exhibited saturable absorption and/or metabolism. In conclusion, greater exposure to prasugrel's active metabolite results in faster onset, higher levels, and less variability of platelet inhibition compared with high-dose clopidogrel in healthy subjects.
Plasma concentrations of drotrecogin alfa (activated) attain steady state rapidly after the infusion is started and decline rapidly after the infusion is stopped. The infusion rate should be based on predose body weight and not on any other demographic or baseline clinical covariate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.