O cean turbulence influences the transport of heat, freshwater, dissolved gases such as CO 2 , pollutants, and other tracers. It is central to understanding ocean energetics and reducing uncertainties in global circulation and simulations from climate models. The dissipation of turbulent energy in stratified water results in irreversible diapycnal (across density surfaces) mixing. Recent work has shown that the spatial and temporal inhomogeneity in diapycnal mixing may play a critical role in a variety of climate phenomena. Hence, a quantitative understanding of the physics that drive the distribution of diapycnal mixing in the ocean interior is fundamental to understanding the ocean's role in climate.Diapycnal mixing is very difficult to accurately parameterize in numerical ocean models for two reasons. The first one is due to the discrete representation of tracer advection in directions that are not perfectly aligned with isopycnals, which can result in numerically induced mixing from truncation errors that is larger than observed diapycnal mixing (Griffies et al. 2000;Ilıcak et al. 2012). The second reason is related to the intermittency of turbulence, which is generated by complex and chaotic motions that span a large space-time range. Furthermore, this mixing is driven by a wide range of processes with distinct governing physics that create a rich global geography [see MacKinnon et al. (2013c) for a review]. The difficulty is also related to the relatively sparse direct sampling of ocean mixing, whereby sophisticated ship-based measurements are generally required to accurately characterize ocean mixing processes. Nonetheless, we have sufficient evidence from theory, process models, laboratory experiments, and field measurements to conclude that away from ocean boundaries (atmosphere, ice, or the solid ocean bottom), diapycnal mixing is largely related to the breaking of internal gravity waves, which have a complex dynamical underpinning and associated geography. The study summarizes recent advances in our understanding of internal wave-driven turbulent mixing in the ocean interior and introduces new parameterizations for global climate ocean models and their climate impacts.
NK and T lymphocytes express both activating and inhibiting receptors for various members of the major histocompatibility complex class I superfamily (MHCISF). To evade immunologic cytotoxicity, many viruses interfere with the function of these receptors, generally by altering the displayed profile of MHCISF proteins on host cells. Using a structurally constrained hidden Markov model, we discovered an orthopoxvirus protein, itself distantly class I–like, that acts as a competitive antagonist of the NKG2D activating receptor. This orthopoxvirus MHC class I–like protein (OMCP) is conserved among cowpox and monkeypox viruses, secreted by infected cells, and bound with high affinity by NKG2D of rodents and humans (KD ∼ 30 and 0.2 nM, respectively). OMCP blocks recognition of host-encoded ligands and inhibits NKG2D-dependent killing by NK cells. This finding represents a novel mechanism for viral interference with NKG2D and sheds light on intercellular recognition events underlying innate immunity against emerging orthopoxviruses.
Oceanic uptake of anthropogenic CO2 leads to decreased pH, carbonate ion concentration, and saturation state with respect to CaCO3 minerals, causing increased dissolution of these minerals at the deep seafloor. This additional dissolution will figure prominently in the neutralization of man-made CO2. However, there has been no concerted assessment of the current extent of anthropogenic CaCO3 dissolution at the deep seafloor. Here, recent databases of bottom-water chemistry, benthic currents, and CaCO3 content of deep-sea sediments are combined with a rate model to derive the global distribution of benthic calcite dissolution rates and obtain primary confirmation of an anthropogenic component. By comparing preindustrial with present-day rates, we determine that significant anthropogenic dissolution now occurs in the western North Atlantic, amounting to 40–100% of the total seafloor dissolution at its most intense locations. At these locations, the calcite compensation depth has risen ∼300 m. Increased benthic dissolution was also revealed at various hot spots in the southern extent of the Atlantic, Indian, and Pacific Oceans. Our findings place constraints on future predictions of ocean acidification, are consequential to the fate of benthic calcifiers, and indicate that a by-product of human activities is currently altering the geological record of the deep sea.
The impact of topographic internal lee wave drag ("wave drag" hereafter) on several aspects of the low-frequency circulation in a high-resolution global ocean model forced by winds and air-sea buoyancy fluxes is examined here. The HYbrid Coordinate Ocean Model (HYCOM) is run at two different horizontal resolutions (one nominally 1/12 o and the other 1/25 o). Wave drag, which parameterizes both topographic blocking and the generation of lee waves arising from geostrophic
The impact of parameterized topographic internal lee wave drag on the input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds and air-sea buoyancy fluxes is examined here. Wave drag, which parameterizes the generation of internal lee waves arising from geostrophic flow impinging upon rough topography, is included in the prognostic model, ensuring that abyssal currents and stratification in the model are affected by the wave drag. An inline mechanical (kinetic plus gravitational potential) energy budget including four dissipative terms (parameterized topographic internal lee wave drag, quadratic bottom boundary layer drag, vertical eddy viscosity, and horizontal eddy viscosity) demonstrates that wave drag dissipates less energy in the model than a diagnostic (offline) estimate would suggest, due to reductions in both the abyssal currents and stratification. The equator experiences the largest reduction in energy dissipation associated with wave drag in inline versus offline estimates. Quadratic bottom drag is the energy sink most affected globally by the presence of wave drag in the model; other energy sinks are substantially affected locally, but not in their global integrals. It is suggested that wave drag cannot be mimicked by artificially increasing the quadratic bottom drag because the energy dissipation rates associated with bottom drag are not spatially correlated with those associated with wave drag where the latter are small. Additionally, in contrast to bottom drag, wave drag is a non-local energy sink. All four aforementioned dissipative terms contribute substantially to the total energy dissipation rate of about one terawatt. The partial time derivative of potential energy (non-zero since the isopycnal depths have a long adjustment time), the surface advective fluxes of potential energy, the rate of change of potential energy due to diffusive mass fluxes, and the conversion between internal energy and potential energy also play a non-negligible role in the total mechanical energy budget. Reasons for the <10% total mechanical energy budget imbalance are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.