Liver injury and acute liver failure caused by acetaminophen (APAP, N-acetyl-p-aminophenol, paracetamol) overdose is a significant clinical problem in most western countries. The only clinically approved antidote is N-acetylcysteine (NAC), which promotes the recovery of hepatic GSH. If administered during the metabolism phase, GSH scavenges the reactive metabolite N-acetyl-p-benzoquinone imine. More recently, it was shown that NAC can also reconstitute mitochondrial GSH levels and scavenge reactive oxygen/peroxynitrite and can support mitochondrial bioenergetics. However, NAC has side effects and may not be efficacious after high overdoses. Repurposing of additional drugs based on their alternate mechanisms of action could be a promising approach. 4-Methylpyrazole (4MP) was shown to be highly effective against APAP toxicity by inhibiting cytochrome P450 enzymes in mice and humans. In addition, 4MP is a potent c-Jun N-terminal kinase inhibitor expanding its therapeutic window. Calmangafodipir (CMFP) is a SOD mimetic, which is well tolerated in patients and has the potential to be effective after severe overdoses. Other drugs approved for humans such as metformin and methylene blue were shown to be protective in mice at high doses or at human therapeutic doses, respectively. Additional protective strategies such as enhancing antioxidant activities, Nrf2-dependent gene induction and autophagy activation by herbal medicine components are being evaluated. However, at this point, their mechanistic insight is limited, and the doses used are high. More rigorous mechanistic studies are needed to advance these herbal compounds. Nevertheless, based on recent studies, 4-methylpyrazole and calmangafodipir have realistic prospects to become complimentary or even alternative antidotes to NAC for APAP overdose.
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
An acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States. A hallmark characteristic of APAP hepatotoxicity is centrilobular necrosis. General, innate mechanisms such as lower amounts of GSH and higher Cyp2e1 expression in pericentral (PC) hepatocytes are known to contribute to the differences in susceptibility to cell injury between periportal (PP) hepatocytes and PC hepatocytes. While a sequence of molecular events involving formation of the reactive metabolite N-acetyl-p-benzoquinone imine, GSH depletion, oxidative stress, and JNK activation define the early cell stress trajectory following APAP exposure, their activation in PC vs PP hepatocytes is not well characterized. By using single-cell RNA sequencing, we provide the first reconstruction of the early transcriptomic APAP liver lobule after validation of our methodology using human liver scRNA-seq data. Two hours after APAP treatment, we find that PP hepatocytes progress along the APAP stress axis to oxidative stress, before resolving injury due to innate and adaptive mechanisms. However, PC hepatocytes continue along this stress axis as indicated by activation of mitogen-activated protein kinase (MAPK) genes, which is absent in PP hepatocytes. We also identify a population of glutamine synthetase enriched PC hepatocytes in close proximity to the central vein, where a stepwise induction of a stress program culminated in cell death. Collectively, these findings elucidate a molecular sequence of events distinguishing the differential response to APAP exposure between PP and PC hepatocytes and identify a subset of uniquely susceptible PC hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.