Utilizing Linear Solvation Free Energy Relationship methodology, a novel pyridinium bromide surface confined ionic liquid (SCIL) stationary phase was characterized under normal phase High Performance Liquid Chromatographic conditions. A limited set of neutral aromatic probe solutes were utilized to rapidly assess the utility of the LSER model, using mobile phases of hexane modified with 2-propanol. The excellent correlation of the global fit across the mobile phase composition range used in this study for the experimental and calculated retention values (R 2 = 0.994) indicates that the LSER model is an appropriate model of characterizing this polar bonded phase under normal phase conditions. For a limited subset of compounds, retention on the pyridinium bromide SCIL stationary phase is more highly correlated with that obtained on a cyano column than on a diol column under NP conditions.
A butylimidazolium bromide surface-confined ionic liquid stationary phase was synthesized in-house. The synthesized phase was investigated for the separation of five peptides (Gly-Tyr, Val-Tyr-Val, leucine enkephalin, methionine enkephalin, and angiotensin-II). The peptides were successfully separated in less than 5 min. The effect of trifluoroacetic acid (TFA) on the separation of peptides was evaluated with results confirming that TFA was not acting as ion-pairing agent in separation of peptides on this phase.
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk (IL/water) values by chromatographic methods is also discussed.
A series of surface-confined ionic liquid (SCIL) stationary phases for high-performance liquid chromatography were synthesized in-house. The synthesized phases were characterized by the linear solvation energy relationship (LSER) method to determine the effect of residual linking ligands and the role of the cation and the anion on retention. Statistical analysis was utilized to determine whether the system coefficients returned from multiple linear regression analysis of chromatographic retention data for a set of 28 neutral aromatic probe solutes were significantly different. Examination of the energetics of retention via kappa-kappa plots agrees with the results obtained from the LSER analysis. Residual linking ligands were determined to contribute reversed-phase-type retention character to the chromatographic system. Furthermore, retention on the SCIL phases was observed to be more profoundly affected by the identity of the anion than by that of the cation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.