Although it is usually possible to achieve a favorable yield of a recombinant protein in Escherichia coli, obtaining the protein in a soluble, biologically active form continues to be a major challenge. Sometimes this problem can be overcome by fusing an aggregation-prone polypeptide to a highly soluble partner. To study this phenomenon in greater detail, we compared the ability of three soluble fusion partners-maltose-binding protein~MBP!, glutathione S-transferasẽ GST!, and thioredoxin~TRX!-to inhibit the aggregation of six diverse proteins that normally accumulate in an insoluble form. Remarkably, we found that MBP is a far more effective solubilizing agent than the other two fusion partners. Moreover, we demonstrated that in some cases fusion to MBP can promote the proper folding of the attached protein into its biologically active conformation. Thus, MBP seems to be capable of functioning as a general molecular chaperone in the context of a fusion protein. A model is proposed to explain how MBP promotes the solubility and influences the folding of its fusion partners.
Because of its stringent sequence specificity, the catalytic domain of the nuclear inclusion protease from tobacco etch virus (TEV) is a useful reagent for cleaving genetically engineered fusion proteins. However, a serious drawback of TEV protease is that it readily cleaves itself at a specific site to generate a truncated enzyme with greatly diminished activity. The rate of autoinactivation is proportional to the concentration of TEV protease, implying a bimolecular reaction mechanism. Yet, a catalytically active protease was unable to convert a catalytically inactive protease into the truncated form. Adding increasing concentrations of the catalytically inactive protease to a fixed amount of the wild-type enzyme accelerated its rate of autoinactivation. Taken together, these results suggest that autoinactivation of TEV protease may be an intramolecular reaction that is facilitated by an allosteric interaction between protease molecules. In an effort to create a more stable protease, we made amino acid substitutions in the P2 and P1' positions of the internal cleavage site and assessed their impact on the enzyme's stability and catalytic activity. One of the P1' mutants, S219V, was not only far more stable than the wild-type protease (approximately 100-fold), but also a more efficient catalyst.
Members of the ribonuclease III (RNase III) family are double-stranded RNA (dsRNA) specific endoribonucleases characterized by a signature motif in their active centers and a two-base 3' overhang in their products. While Dicer, which produces small interfering RNAs, is currently the focus of intense interest, the structurally simpler bacterial RNase III serves as a paradigm for the entire family. Here, we present the crystal structure of an RNase III-product complex, the first catalytic complex observed for the family. A 7 residue linker within the protein facilitates induced fit in protein-RNA recognition. A pattern of protein-RNA interactions, defined by four RNA binding motifs in RNase III and three protein-interacting boxes in dsRNA, is responsible for substrate specificity, while conserved amino acid residues and divalent cations are responsible for scissile-bond cleavage. The structure reveals a wealth of information about the mechanism of RNA hydrolysis that can be extrapolated to other RNase III family members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.