This paper presents a feasibility study of surface geometry (SG) evaluation and material classification (MC) for robotic spraying. We propose two complementary approaches using point clouds and intensity data provided by a state-of-the-art industrial time-of-flight (ToF) depth camera. The SG evaluation is based on geometric feature computation within local neighbourhoods, which are then used within a supervised classification. The results of this approach are SG classes according to the level of geometric variability of the surface, displayed as SG maps. For MC, active reflectance estimation is investigated and exploited to derive features related to the reflectance and diffusive properties of each material for classification. The result of both approaches can be prospectively used as feedback in digital fabrication for in-line adaptation of the process to improve control of relevant geometrical and material properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.