Fish as well as birds, mammals, insects and other animals are capable of emitting sounds for diverse purposes, which can be recorded through microphone sensors. Although fish vocalizations have been known for a long time, they have been poorly studied and applied in their taxonomic classification. This work presents a novel approach for automatic remote acoustic identification of fish through their acoustic signals by applying pattern recognition techniques. The sound signals are preprocessed and automatically segmented to extract each call from the background noise. Then, the calls are parameterized using Linear and Mel Frequency Cepstral Coefficients (LFCC and MFCC), Shannon Entropy (SE) and Syllable Length (SL), yielding useful information for the classification phase. In our experiments, 102 different fish species have been successfully identified with three widely used machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Machine (SVM). Experimental results show an average classification accuracy of 95.24%, 93.56% and 95.58%, respectively.
Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm.
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have.
Ambient Assisted Living (AAL) has become an attractive research topic due to growing interest in remote monitoring of older people. Development in sensor technologies and advances in wireless communications allows to remotely offer smart assistance and monitor those people at their own home, increasing their quality of life. In this context, Wireless Acoustic Sensor Networks (WASN) provide a suitable way for implementing AAL systems which can be used to infer hazardous situations via environmental sounds identification. Nevertheless, satisfying sensor solutions have not been found with the considerations of both low cost and high performance. In this paper, we report the design and implementation of a wireless acoustic sensor to be located at the edge of a WASN for recording and processing environmental sounds which can be applied to AAL systems for personal healthcare because it has the following significant advantages: low cost, small size, audio sampling and computation capabilities for audio processing. The proposed wireless acoustic sensor is able to record audio samples at least to 10 kHz sampling frequency and 12-bit resolution. Also, it is capable of doing audio signal processing without compromising the sample rate and the energy consumption by using a new microcontroller released at the last quarter of 2016. The proposed low cost wireless acoustic sensor has been verified using four randomness tests for doing statistical analysis and a classification system of the recorded sounds based on audio fingerprints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.