Combined kinetic (electrochemical) and thermodynamic (calorimetric) investigations were performed for an unbound (intact native-like) cytochrome c (CytC) freely diffusing to and from gold electrodes modified by hydroxyl-terminated self-assembled monolayer films (SAMs), under a unique broad range of experimental conditions. Our approach included: 1) fine-tuning of the charge-transfer (CT) distance by using the extended set of Au-deposited hydroxyl-terminated alkanethiol SAMs [-S-(CH(2))(n)-OH] of variable thickness (n=2, 3, 4, 6, 11); 2) application of a high-pressure (up to 150 MPa) kinetic strategy toward the representative Au/SAM/CytC assemblies (n=3, 4, 6); 3) complementary electrochemical and microcalorimetric studies on the impact of some stabilizing and denaturing additives. We report for the first time a mechanistic changeover detected for "free" CytC by three independent kinetic methods, manifested through 1) the abrupt change in the dependence of the shape of the electron exchange standard rate constant (k(o)) versus the SAM thickness (resulting in a variation of estimated actual CT range within ca. 15 to 25 A including ca. 11 A of an "effective" heme-to-omega-hydroxyl distance). The corresponding values of the electronic coupling matrix element vary within the range from ca. 3 to 0.02 cm(-1); 2) the change in activation volume from +6.7 (n=3), to approximately 0 (n=4), and -5.5 (n=6) cm(3) mol(-1) (disclosing at n=3 a direct pressure effect on the protein's internal viscosity); 3) a "full" Kramers-type viscosity dependence for k(o) at n=2 and 3 (demonstrating control of an intraglobular friction through the external dynamic properties), and its gradual transformation to the viscosity independent (nonadiabatic) regime at n=6 and 11. Multilateral cross-testing of "free" CytC in a native-like, glucose-stabilized and urea-destabilized (molten-globule-like) states revealed novel intrinsic links between local/global structural and functional characteristics. Importantly, our results on the high-pressure and solution-viscosity effects, together with matching literature data, strongly support the concept of "dynamic slaving", which implies that fluctuations involving "small" solution components control the proteins' intrinsic dynamics and function in a highly cooperative manner as far as CT processes under adiabatic conditions are concerned.
Free trade: The electron exchange of cytochrome c freely diffusing to gold electrodes modified by hydroxy‐terminated alkanethiol self‐assembled monolayers (SAMs; see picture) is examined by high‐pressure kinetic studies. The SAM thickness, solution viscosity, and hydrostatic pressure influence a changeover in the charge‐transfer mechanism and the corresponding kinetic response.
We report on the fabrication of a complex electrode architecture for efficient direct bioelectrocatalysis. In the developed procedure, the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase entrapped in a sulfonated polyaniline [poly(2-methoxyaniline-5-sulfonic acid)-co-aniline] was immobilized on macroporous indium tin oxide (macroITO) electrodes. The use of the 3D-conducting scaffold with a large surface area in combination with the conductive polymer enables immobilization of large amounts of enzyme and its efficient communication with the electrode, leading to enhanced direct bioelectrocatalysis. In the presence of glucose, the fabricated bioelectrodes show an exceptionally high direct bioelectrocatalytical response without any additional mediator. The catalytic current is increased more than 200-fold compared to planar ITO electrodes. Together with a high long-term stability (the current response is maintained for >90% of the initial value even after 2 weeks of storage), the transparent 3D macroITO structure with a conductive polymer represents a valuable basis for the construction of highly efficient bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction.
Nanostructured transparent conducting oxide (TCO) layers gain increasing importance as high surface area electrodes enabling incorporation of functional redox species with high loading. The fabrication of porous TCO films, namely, antimony‐doped tin oxide (ATO), is reported using the self‐assembly of preformed ATO nanocrystals with poly(ethylene oxide‐b‐hexyl acrylate) (PEO‐b‐PHA) block copolymer. The high molar mass of the polymer and tunable solution processing conditions enable the fabrication of TCO electrodes with pore sizes ranging from mesopores to macropores. Particularly notable is access to uniform macroporous films with a nominal pore size of around 80 nm, which is difficult to obtain by other techniques. The combination of tunable porosity with a large conducting interface makes the obtained layers versatile current collectors with adjustable performance. While all the obtained electrodes incorporate a large amount of small redox molecules such as molybdenum polyoxometalate, only the electrodes with sufficiently large macropores are able to accommodate high amounts of bulky photoactive photosystem I (PSI) protein complexes. The 11‐fold enhancement of the current response of PSI modified macroporous ATO electrodes compared to PSI on planar indium tin oxide (ITO), makes this type of electrodes promising candidates for the development of biohybrid devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.