We prove a theorem about the stability of action variables for Gevrey quasi-convex near-integrable Hamiltonian systems and construct in that context a system with an unstable orbit whose mean speed of drift allows us to check the optimality of the stability theorem.Our stability result generalizes those by Lochak-Neishtadt and Pöschel, which give precise exponents of stability in the Nekhoroshev Theorem for the quasi-convex case, to the situation in which the Hamiltonian function is only assumed to belong to some Gevrey class instead of being real-analytic. For n degrees of freedom and Gevrey-α Hamiltonians, α ≥ 1, we prove that one can choose a = 1/2nα as an exponent for the time of stability and b = 1/2n as an exponent for the radius of confinement of the action variables, with refinements for the orbits which start close to a resonant surface (we thus recover the result for the real-analytic case by setting α = 1).On the other hand, for α > 1, the existence of compact-supported Gevrey functions allows us to exhibit for each n ≥ 3 a sequence of Hamiltonian systems with wandering points, whose limit is a quasi-convex integrable system, and where the speed of drift is characterized by the exponent 1/2(n − 2)α. This exponent is optimal for the kind of wandering points we consider, inasmuch as the initial condition is located close to a doubly-resonant surface and the stability result holds with precisely that exponent for such an initial condition. We also discuss the relationship between our example of instability, which relies on a specific construction of a perturbation of a discrete integrable system, and Arnold's mechanism of instability, whose main features (partially hyperbolic tori, heteroclinic connections) are indeed present in our system.
This article is an introduction to some aspects of Écalle's mould calculus, a powerful combinatorial tool which yields surprisingly explicit formulas for the normalising series attached to an analytic germ of singular vector field or of map. This is illustrated on the case of the saddle-node, a two-dimensional vector field which is formally conjugate to Euler's vector field x 2 ∂ ∂x + (x + y) ∂ ∂y , and for which the formal normalisation is shown to be resurgent in 1/x. Resurgence monomials adapted to alien calculus are also described as another application of mould calculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.