We measured the forces required to slide sessile drops over surfaces. The forces were measured by means of a vertical deflectable capillary stuck in the drop. The drop adhesion force instrument (DAFI) allowed the investigation of the dynamic lateral adhesion force of water drops of 0.1 to 2 μL volume at defined velocities. On flat PDMS surfaces, the dynamic lateral adhesion force increases linearly with the diameter of the contact area of the solid-liquid interface and linearly with the sliding velocity. The movement of the drop relative to the surfaces enabled us to resolve the pinning of the three-phase contact line to individual defects. We further investigated a 3D superhydrophobic pillar array. The depinning of the receding part of the rim of the drop occurred almost simultaneously from four to five pillars, giving rise to peaks in the lateral adhesion force.
While the global slippage of water past superhydrophobic surfaces has attracted wide interest, the local distribution of slip still remains unclear. Using fluorescence correlation spectroscopy, we performed detailed measurements of the local flow field and slip length for water in the Cassie state on a microstructured superhydrophobic surface. We revealed that the local slip length is finite, nonconstant, anisotropic, and sensitive to the presence of surfactants. In combination with numerical calculations of the flow, we can explain all these properties by the local hydrodynamics.
To achieve specific cell targeting by various receptors for oligosaccharides or antibodies, a carrier must not be taken up by any of the very many different cells and needs functional groups prone to clean conjugation chemistry to derive well-defined structures with a high biological specificity. A polymeric nanocarrier is presented that consists of a cylindrical brush polymer with poly-2-oxazoline side chains carrying an azide functional group on each of the many side chain ends. After click conjugation of dye and an anti-DEC205 antibody to the periphery of the cylindrical brush polymer, antibody-mediated specific binding and uptake into DEC205(+) -positive mouse bone marrow-derived dendritic cells (BMDC) was observed, whereas binding and uptake by DEC205(-) negative BMDC and non-DC was essentially absent. Additional conjugation of an antigen peptide yielded a multifunctional polymer structure with a much stronger antigen-specific T-cell stimulatory capacity of pretreated BMDC than application of antigen or polymer-antigen conjugate.
Poly(ε-N-methacryloyl-L-lysine) (PMALys) was synthesized by free radical polymerization yielding a zwitterionic polymer with M w = 721 000 g mol −1 . The polymer dissolves in pure water as well as in aqueous salt solution up to 5 M NaClO 4 and over wide range of pH values (1.3 ≤ pH ≤ 12.7) as single chains without any sign for aggregate formation. The zwitterionic polymer shows an expanded random coil structure at and close to isoelectric conditions and further expands upon addition of acid and base, respectively. The polymer fulfills four major prerequisites for a promising nano carrier in potential biomedical applications: (1) It is biocompatible, indicated by a low cytotoxicity. (2) It does not aggregate in concentrated human blood serum solution. (3) The amino groups in the polyzwitterion may be utilized for conjugations as demonstrated by labeling reactions with AlexaFluor488. (4) Cell uptake experiments revealed little uptake in bone marrow dendritic cells, i.e., little unspecif ic uptake, which is mandatory for a successful specific targeting of cells. Finally, upon addition of Zn 2+ ions the polyzwitterions may be converted into polycations which are demonstrated to form complexes with DNA. Such complexes may be advantageous for application in gene transfection studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.