3D pharmacophore models are three‐dimensional ensembles of chemically defined interactions of a ligand in its bioactive conformation. They represent an elegant way to decipher chemically encoded ligand information and have therefore become a valuable tool in drug design. In this review, we provide an overview on the basic concept of this method and summarize key studies for applying 3D pharmacophore models in virtual screening and mechanistic studies for protein functionality. Moreover, we discuss recent developments in the field. The combination of 3D pharmacophore models with molecular dynamics simulations could be a quantum leap forward since these approaches consider macromolecule–ligand interactions as dynamic and therefore show a physiologically relevant interaction pattern. Other trends include the efficient usage of 3D pharmacophore information in machine learning and artificial intelligence applications or freely accessible web servers for 3D pharmacophore modeling. The recent developments show that 3D pharmacophore modeling is a vibrant field with various applications in drug discovery and beyond. This article is categorized under: Computer and Information Science > Chemoinformatics Computer and Information Science > Computer Algorithms and Programming Molecular and Statistical Mechanics > Molecular Interactions
Herein we provide a living summary of the data generated during the COVID Moonshot project focused on the development of SARS-CoV-2 main protease (Mpro) inhibitors. Our approach uniquely combines crowdsourced medicinal chemistry insights with high throughput crystallography, exascale computational chemistry infrastructure for simulations, and machine learning in triaging designs and predicting synthetic routes. This manuscript describes our methodologies leading to both covalent and non-covalent inhibitors displaying protease IC50 values under 150 nM and viral inhibition under 5 uM in multiple different viral replication assays. Furthermore, we provide over 200 crystal structures of fragment-like and lead-like molecules in complex with the main protease. Over 1000 synthesized and ordered compounds are also reported with the corresponding activity in Mpro enzymatic assays using two different experimental setups. The data referenced in this document will be continually updated to reflect the current experimental progress of the COVID Moonshot project, and serves as a citable reference for ensuing publications. All of the generated data is open to other researchers who may find it of use.
Ligands entering a protein binding pocket essentially compete with water molecules for binding to the protein. Hence, the location and thermodynamic properties of water molecules in protein structures have gained increased attention in the drug design community.Including corresponding data into 3D pharmacophore modeling is essential for efficient high throughput virtual screening. Here, we present PyRod, a free and open-source python software that allows for visualization of pharmacophoric binding pocket characteristics, identification of hot spots for ligand binding and subsequent generation of pharmacophore features for virtual screening. The implemented routines analyze the protein environment of water molecules in molecular dynamics (MD) simulations and can differentiate between hydrogen bonded waters as well as waters in a protein environment of hydrophobic, charged or aromatic atom groups. The gathered information is further processed to generate dynamic molecular interaction fields 2 (dMIFs) for visualization and pharmacophoric features for virtual screening. The described software was applied to 5 therapeutically relevant drug targets and generated pharmacophores were evaluated using DUD-E benchmarking sets. The best performing pharmacophore was found for the HIV1 protease with an early enrichment factor of 54.6. PyRod adds a new perspective to structure-based screening campaigns by providing easy-to-interpret dMIFs and purely protein-based pharmacophores that are solely based on tracing water molecules in MD simulations. Since structural information about co-crystallized ligands is not needed, screening campaigns can be followed, for which less or no ligand information is available. PyRod is freely available at https://github.com/schallerdavid/pyrod.
New 2-(thien-2-yl)-acrylonitriles with putative kinase inhibitory activity were prepared and tested for their antineoplastic efficacy in hepatoma models. Four out of the 14 derivatives were shown to inhibit hepatoma cell proliferation at (sub-)micromolar concentrations with IC50 values below that of the clinically relevant multikinase inhibitor sorafenib, which served as a reference. Colony formation assays as well as primary in vivo examinations of hepatoma tumors grown on the chorioallantoic membrane of fertilized chicken eggs (CAM assay) confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic capsase-3 activity, while no contribution of unspecific cytotoxic effects was observed in LDH-release measurements. Kinase profiling of cancer relevant protein kinases identified the two 3-aryl-2-(thien-2-yl)acrylonitrile derivatives 1b and 1c as (multi-)kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Additional bioinformatic analysis of the VEGFR-2 binding modes by docking and molecular dynamics calculations supported the experimental findings and indicated that the hydroxy group of 1c might be crucial for its distinct inhibitory potency against VEGFR-2. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in HCC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.