Brown adipose tissue (BAT) dissipates chemical energy and generates heat to protect animals from cold and obesity. Rodents possess two types of UCP-1 positive brown adipocytes arising from distinct developmental lineages: “classical” brown adipocytes develop during the prenatal stage whereas “beige” or “brite” cells that reside in white adipose tissue (WAT) develop during the postnatal stage in response to chronic cold or PPARγ agonists. Beige cells’ inducible characteristics make them a promising therapeutic target for obesity treatment, however, the relevance of this cell type in humans remains unknown. In the present study, we determined the gene signatures that were unique to classical brown adipocytes and to beige cells induced by a specific PPARγ agonist rosiglitazone in mice. Subsequently we applied the transcriptional data to humans and examined the molecular signatures of human BAT isolated from multiple adipose depots. To our surprise, nearly all the human BAT abundantly expressed beige cell-selective genes, but the expression of classical brown fat-selective genes were nearly undetectable. Interestingly, expression of known brown fat-selective genes such as PRDM16 was strongly correlated with that of the newly identified beige cell-selective genes, but not with that of classical brown fat-selective genes. Furthermore, histological analyses showed that a new beige cell marker, CITED1, was selectively expressed in the UCP1-positive beige cells as well as in human BAT. These data indicate that human BAT may be primary composed of beige/brite cells.
Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor Neurogenin3 initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurogenin3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes.
The specialized endocrine and exocrine cells of the pancreas originally derive from a pool of apparently identical cells in the early gut endoderm. Serial changes in their gene expression program, controlled by a hierarchy of pancreatic transcription factors, direct this progression from multipotent progenitor cell to mature pancreatic cell. When the cells differentiate, this hierarchy of factors coalesces into a network of factors that maintain the differentiated phenotype of the cells. As we develop an understanding of the pancreatic transcription factors, we are also acquiring the tools with which we can ultimately control pancreatic cell differentiation.
Neurogenin3 (ngn3), a basic helix-loop-helix (bHLH) transcription factor, functions as a pro-endocrine factor in the developing pancreas: by itself, it is sufficient to force undifferentiated pancreatic epithelial cells to become islet cells. Because ngn3 expression determines which precursor cells will differentiate into islet cells, the signals that regulate ngn3 expression control islet cell formation. To investigate the factors that control ngn3 gene expression, we mapped the human and mouse ngn3 promoters and delineated transcriptionally active sequences within the human promoter. Surprisingly, the human ngn3 promoter drives transcription in all cell lines tested, including fibroblast cell lines. In contrast, in transgenic animals the promoter drives expression specifically in regions of ngn3 expression in the developing pancreas and gut; and the addition of distal sequences greatly enhances transgene expression. Within the distal enhancer, binding sites for several pancreatic transcription factors, including hepatocyte nuclear factor (HNF)-1 and HNF-3, form a tight cluster. HES1, an inhibitory bHLH factor activated by Notch signaling, binds to the proximal promoter and specifically blocks promoter activity. Together with previous genetic data, these results suggest a model in which the ngn3 gene is activated by the coordinated activities of several pancreatic transcription factors and inhibited by Notch signaling through HES1. Diabetes 50:928 -936, 2001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.