Background Monoclonal antibodies (mAb) have been introduced as a promising new therapeutic approach against SARS-CoV-2. At present, there is little experience regarding their clinical effects in patient populations underrepresented in clinical trials, e.g. immunocompromised patients. Additionally, it is not well known to what extent SARS-CoV-2 treatment with monoclonal antibodies could trigger the selection of immune escape viral variants. Methods After identifying immunocompromised patients with viral rebound under treatment with bamlanivimab, we characterized the SARS-CoV-2-isolates by whole genome sequencing. Viral load measurements and sequence analysis were performed consecutively before and after bamlanivimab administration. Findings After initial decrease of viral load, viral clearance was not achieved in five of six immunocompromised patients treated with bamlanivimab. Instead, viral replication increased again over the course of the following one to two weeks. In these five patients, the E484K substitution – known to confer immune escape – was detected at the time of viral rebound but not before bamlanivimab treatment. Interpretation Treatment of SARS-CoV-2 with bamlanivimab in immunocompromised patients results in the rapid development of immune escape variants in a significant proportion of cases. Given that the E484K mutation can hamper natural immunity, the effectiveness of vaccination as well as antibody-based therapies, these findings may have important implications not only for individual treatment decisions but may also pose a risk to general prevention and treatment strategies. Funding All authors are employed and all expenses covered by governmental, federal state, or other publicly funded institutions.
Background & Aims: Extracellular vesicles (EVs) play an important role in intercellular communication, serving as vehicles for the exchange of biological materials and being involved in the regulation of physiological processes. EVs and their associated cargoes are considered a promising source of disease-associated biomarkers. The purpose of this study was to establish an easy-to-use, reproducible, and scalable workflow to efficiently analyze EVs in the context of liver disease. Methods: An optimized workflow was established for the pre-analytical processing and isolation of EVs from plasma and serum. Nanoparticle Tracking Analysis (NTA) was used to characterize circulating EVs in the serum of patients with nonalcoholic fatty liver disease (NAFLD), autoimmune liver disease (AIH), and animal models with impaired liver function. EVs were separated from soluble proteins by an optimized, polyethylene glycol (PEG)-based enrichment protocol. Enriched EVs were either labeled and functionally characterized by monitoring cellular uptake or lysed for biomarker identification. Results: Circulating EVs in the serum of patients with NAFLD or AIH and in different animal models have been characterized by NTA. Here we show that both the quantity and size of EVs in the serum of patients/animal models are significantly different from those of healthy individuals. We show that isolated EVs are functional, and their uptake by acceptor cells can be quantified after fluorescence labelling. Enriched EVs were directly used to analyze RNA biomarkers. Several microRNAs, including miR-15b, -16, -21, -122 and -223, were found to be significantly up-regulated in EVs isolated from the sera of patients with NAFLD and AIH. We show that EVs transport cytokines, and that IL-2, IL-6 and IL-8 were significantly up-regulated in EVs enriched from patients with cholangiocarcinoma (CCA) compared to healthy controls. Conclusions: The workflow presented here represents an accessible and easy-to-use approach that enables the analysis and enrichment of EVs from complex biological fluids and their preparation for functional characterization or downstream analysis. In this study, the levels of several miRNAs were found to be significantly increased in EVs isolated from AIH and NAFLD patients compared with healthy controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.