The existence of an organized streamwise vortical structure, which is superimposed on the well known coherent spanwise vorticity in nominally two-dimensional free shear layers, has been studied extensively. In the presence of stratification, however, buoyancy forces contribute to an additional mechanism for the generation of streamwise vorticity. As the spanwise vorticity layer rolls up and pulls high-density fluid above low-density fluid, a local instability results. The purpose of the current investigation is to force the three-dimensional instability in the stratified shear layer. In this manner, we experimentally observe the effect of buoyancy on the streamwise vortex tube evolution, the evolution of the buoyancy-induced instability, and the interaction between these two vortical structures. A simple numerical model is proposed which captures the relevant physics of the flow evolution. It is found that, depending on the location, streamwise vortices resulting from vortex stretching may be weakened or enhanced by the stratification. Buoyancy-induced vortex structures are shown to form where the unstable part of the interface is tilted by the streamwise vortex tubes. These vortices strengthen initially, then weaken downstream, the timescale for this process depending upon the degree of stratification. For initial Richardson numbers larger than about 0.03, the baroclinically weakened vortex tubes eventually disappear as the flow evolves downstream and the baroclinically generated vortices dominate the three-dimensional flow structure.
A numerical large-eddy simulation model is currently being used to quantify aircraft wake vortex behavior with meteorological observables. The model, having a meteorological framework, permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, and humidity. The addition of grid-scale turbulence as an initial condition appeared to have little consequence. Results show that conventional nondimensionalizations work very well for vortex pairs embedded in stably stratified flows. However, this result is based on simple environments with constant Brunt-Vaisala frequency. Results presented here also show that crosswind profiles exert important and complex interactions on the trajectories of wake vortices. Nonlinear crosswind profiles tended to arrest the descent of wake vortex pairs. The member of the vortex pair with vorticity of same sign as the vertical change in the ambient along-track vorticity may be deflected upwards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.