a) Γ K M (b) FIG. 1. (Color online) (a) Honeycomb lattice with the different spin exchange interactions considered in this paper; (b) corresponding Brillouin zone with relevant k points. 2 2.5 Velocity [arb. units] J 3 =0 J 3 =0.3
When a system undergoes a quantum phase transition, the ground-state wave function shows a change of nature, which can be monitored using the fidelity concept. We introduce two quantum Monte Carlo schemes that allow the computation of fidelity and its susceptibility for large interacting many-body systems. These methods are illustrated on a two-dimensional Heisenberg model, where fidelity estimators show marked behavior at two successive quantum phase transitions. We also develop a scaling theory which relates the divergence of the fidelity susceptibility to the critical exponent of the correlation length. A good agreement is found with the numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.