A high impedance electrometer / source meter (Keithley 6517B / Keithley 2450) acted as a voltage source (I-V characteristics, switching voltage) and simultaneously measured the current. The samples were illuminated by a diode laser (Cobolt 06 MLD / Thorlabs LDM9T) with a wavelength of 405 nm and 20 mW power. Additionally, a diode-based solar simulator (Wavelabs SINUS-70) was used as a light source to measure under 1.5 AM condition.
The dielectric function and the bandgap of BiFe0.5Cr0.5O3 thin films were determined from spectroscopic ellipsometry and compared with that of the parent compounds BiFeO3 and BiCrO3. The bandgap value of BiFe0.5Cr0.5O3 is lower than that of BiFeO3 and BiCrO3, due to an optical transition at ~2.27 eV attributed to a charge transfer excitation between the Cr and Fe ions. This optical transition enables new phonon modes which have been investigated using Raman spectroscopy by employing multi-wavelengths excitation. The appearance of a new Raman mode at ~670 cm−1 with a strong intensity dependence on the excitation line and its higher order scattering activation was found for both BiFe0.5Cr0.5O3 thin films and BiFexCr1−xO3 polycrystalline bulk samples. Furthermore, Raman spectroscopy was also used to investigate temperature induced structural phase transitions in BiFe0.3Cr0.7O3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.