The heart in higher vertebrates develops from a simple tube into a complex organ with four chambers specialized for efficient pumping at pressure. During this period, there is a concomitant change in the level of myocardial organization. One important event is the emergence of trabeculations in the luminal layers of the ventricles, a feature which enables the myocardium to increase its mass in the absence of any discrete coronary circulation. In subsequent development, this trabecular layer becomes solidified in its deeper part, thus increasing the compact component of the ventricular myocardium. The remaining layer adjacent to the ventricular lumen retains its trabeculations, with patterns which are both ventricle- and species-specific. During ontogenesis, the compact layer is initially only a few cells thick, but gradually develops a multilayered spiral architecture. A similar process can be charted in the atrial myocardium, where the luminal trabeculations become the pectinate muscles. Their extent then provides the best guide for distinguishing intrinsically the morphologically right from the left atrium. We review the variations of these processes during the development of the human heart and hearts from commonly used laboratory species (chick, mouse, and rat). Comparison with hearts from lower vertebrates is also provided. Despite some variations, such as the final pattern of papillary or pectinate muscles, the hearts observe the same biomechanical rules, and thus share many common points. The functional importance of myocardial organization is demonstrated by lethality of mouse mutants with perturbed myocardial architecture. We conclude that experimental studies uncovering the rules of myocardial assembly are relevant for the full understanding of development of the human heart.
Adult myocardium adapts to changing functional demands by hyper- or hypotrophy while the developing heart reacts by hyper- or hypoplasia. How embryonic myocardial architecture adjusts to experimentally altered loading is not known. We subjected the chick embryonic hearts to mechanically altered loading to study its influence upon ventricular myoarchitecture. Chick embryonic hearts were subjected to conotruncal banding (increased afterload model), or left atrial ligation or clipping, creating a combined model of increased preload in right ventricle and decreased preload in left ventricle. Modifications of myocardial architecture were studied by scanning electron microscopy and histology with morphometry. In the conotruncal banded group, there was a mild to moderate ventricular dilatation, thickening of the compact myocardium and trabeculae, and spiraling of trabecular course in the left ventricle. Right atrioventricular valve morphology was altered from normal muscular flap towards a bicuspid structure. Left atrial ligation or clipping resulted in hypoplasia of the left heart structures with compensatory overdevelopment on the right side. Hypoplastic left ventricle had decreased myocardial volume and showed accelerated trabecular compaction. Increased volume load in the right ventricle was compensated primarily by chamber dilatation with altered trabecular pattern, and by trabecular proliferation and thickening of the compact myocardium at the later stages. A ventricular septal defect was noted in all conotruncal banded, and 25% of left atrial ligated hearts. Increasing pressure load is a main stimulus for embryonic myocardial growth, while increased volume load is compensated primarily by dilatation. Adequate loading is important for normal cardiac morphogenesis and the development of typical myocardial patterns.
The combination of optical clarity and large scale of mutants makes the zebrafish vital for developmental biologists. However, there is no comprehensive reference of morphology and function for this animal. Since study of gene expression must be integrated with structure and function, we undertook a longitudinal study to define the cardiac morphology and physiology of the developing zebrafish. Our studies included 48-hr, 5-day, 2-week, 4-week, and 3-month post-fertilization zebrafish. We measured ventricular and body wet weights, and performed morphologic analysis on the heart with H&E and MF-20 antibody sections. Ventricular and dorsal aortic pressures were measured with a servonull system. Ventricular and body weight increased geometrically with development, but at different rates. Ventricle-to-body ratio decreased from 0.11 at 48-hr to 0.02 in adult. The heart is partitioned into sinus venosus, atrium, ventricle, and bulbus arteriosus as identified by the constriction between the segments at 48-hr.Valves were formed at 5-day post-fertilization. Until maturity, the atrium showed extensive pectinate muscles, and the atrial wall increased to two to three cell layers. The ventricular wall and the compact layer increased to three to four cell layers, while the extent and complexity in trabeculation continued. Further thickening of the heart wall was mainly by increase in cell size. The bulbus arteriosus had similar characteristics to the myocardium in early stages, but lost the MF-20 positive staining, and transitioned to smooth muscle layer. All pressures increased geometrically with development, and were linearly related to stage-specific values for body weight (P Ͻ 0.05). These data define the parameters of normal cardiac morphology and ventricular function in the developing zebrafish. Anat Rec 260: 148 -157, 2000.
Abstract-The His-Purkinje system (HPS) is a network of conduction cells responsible for coordinating the contraction of the ventricles. Earlier studies using bipolar electrodes indicated that the functional maturation of the HPS in the chick embryo is marked by a topological shift in the sequence of activation of the ventricle. Namely, at around the completion of septation, an immature base-to-apex sequence of ventricular activation was reported to convert to the apex-to-base pattern characteristic of the mature heart. Previously, we have proposed that hemodynamics and/or mechanical conditioning may be key epigenetic factors in development of the HPS. We thus hypothesized that the timing of the topological shift marking maturation of the conduction system is sensitive to variation in hemodynamic load. Spatiotemporal patterns of ventricular activation (as revealed by high-speed imaging of fluorescent voltage-sensitive dye) were mapped in chick hearts over normal development, and following procedures previously characterized as causing increased (conotruncal banding, CTB) or reduced (left atrial ligation, LAL) hemodynamic loading of the embryonic heart. The results revealed that the timing of the shift to mature activation displays striking plasticity. CTB led to precocious emergence of mature HPS function relative to controls whereas LAL was associated with delayed conversion to apical initiation. The results from our study indicate a critical role for biophysical factors in differentiation of specialized cardiac tissues and provide the basis of a new model for studies of the molecular mechanisms involved in induction and patterning of the HPS in vivo. Key Words: chick embryo Ⅲ His-Purkinje system Ⅲ heart development Ⅲ optical mapping T he His-Purkinje system (HPS) is a specialized network of conduction tissues that ensures coordinated and reliable activation of the ventricular myocardium. Dysfunction of this essential network of specialized cardiac tissues is linked to ventricular arrhythmia and sudden cardiac death in both adults and children. To give a recent example, Purkinje fibers were mapped as the predominant origin of arrhythmias in human patients with recurrent idiopathic ventricular fibrillation. 1 The relationship between the anatomical structure of the HPS and its electrophysiological characteristics during the normal cardiac cycle has now been understood for nearly a century (summarized and put in perspective in Suma 2 ). After activation of the atria by the sinoatrial (SA) node, propagating electrical impulse exits from the atrioventricular (AV) node and is spread rapidly into the left and right ventricles via the bundle of His, its branched limbs and networks of Purkinje fibers ramifying from the bundle branches. The larger fascicles of the HPS (ie, the His bundle and bundle branches) are insulated from surrounding muscle as they course from the crest of the septum toward the ventricular apex. This insulation breaks down within the peripheral networks of Purkinje fibers, enabling direct electroton...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.