Reverse engineering (RE) is the only foolproof method of establishing trust and assurance in hardware. This is especially important in today's climate, where new threats are arising daily. A Printed Circuit Board (PCB) serves at the heart of virtually all electronic systems and, for that reason, a precious target amongst attackers. Therefore, it is increasingly necessary to validate and verify these hardware boards both accurately and efficiently. When discussing PCBs, the current state-of-the-art is non-destructive RE through X-ray Computed Tomography (CT); however, it remains a predominantly manual process. Our work in this paper aims at paving the way for future developments in the automation of PCB RE by presenting automatic detection of vias, a key component to every PCB design. We provide a via detection framework that utilizes the Hough circle transform for the initial detection, and is followed by an iterative false removal process developed specifically for detecting vias. We discuss the challenges of detecting vias, our proposed solution, and lastly, evaluate our methodology not only from an accuracy perspective but the insights gained through iteratively removing false-positive circles as well. We also compare our proposed methodology to an off-the-shelf implementation with minimal adjustments of Mask R-CNN; a fast object detection algorithm that, although is not optimized for our application, is a reasonable deep learning model to measure our work against. The Mask R-CNN we utilize is a network pretrained on MS COCO followed by fine tuning/training on prepared PCB via images. Finally, we evaluate our results on two datasets, one PCB designed in house and another commercial PCB, and achieve peak results of 0.886, 0.936, 0.973, for intersection over union (IoU), Dice Coefficient, and Structural Similarity Index. These results vastly outperform our tuned implementation of Mask R-CNN.
For successful printed circuit board (PCB) reverse engineering (RE), the resulting device must retain the physical characteristics and functionality of the original. Although the applications of RE are within the discretion of the executing party, establishing a viable, non-destructive framework for analysis is vital for any stakeholder in the PCB industry. A widely-regarded approach in PCB RE uses non-destructive x-ray computed tomography (CT) to produce three-dimensional volumes with several slices of data corresponding to multi-layered PCBs. However, the noise sources specific to x-ray CT and variability from designers hampers the thorough acquisition of features necessary for successful RE. This article investigates a deep learning approach as a successor to the current state-of-the-art for detecting vias on PCB x-ray CT images; vias are a key building block of PCB designs. During RE, vias offer an understanding of the PCB’s electrical connections across multiple layers. Our method is an improvement on an earlier iteration which demonstrates significantly faster runtime with quality of results comparable to or better than the current state-of-the-art, unsupervised iterative Hough-based method. Compared with the Hough-based method, the current framework is 4.5 times faster for the discrete image scenario and 24.1 times faster for the volumetric image scenario. The upgrades to the prior deep learning version include faster feature-based detection for real-world usability and adaptive post-processing methods to improve the quality of detections.
Artificial intelligence (AI) and machine learning (ML) techniques have been increasingly used in several fields to improve performance and the level of automation. In recent years, this use has exponentially increased due to the advancement of high-performance computing and the ever increasing size of data. One of such fields is that of hardware design; specifically the design of digital and analog integrated circuits (ICs), where AI/ ML techniques have been extensively used to address ever-increasing design complexity, aggressive time-to-market, and the growing number of ubiquitous interconnected devices (ICD). However, the security concerns and issues related to IC design have been highly overlooked. In this paper, we summarize the state-of-the-art in AI/ML for circuit design/optimization, security and engineering challenges, research in security-aware CAD/EDA, and future research directions and needs for using AI/ML for security-aware circuit design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.