We have updated the catalogue of common and well-documented (CWD) HLA alleles to reflect current understanding of the prevalence of specific allele sequences. The original CWD catalogue designated 721 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, and –DPB1 loci in IMGT/HLA Database release 2.15.0 as being CWD. The updated CWD catalogue designates 1122 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and –DPB1 loci as being CWD, and represents 14.3% of the HLA alleles in IMGT/HLA Database release 3.9.0. In particular, we identified 415 of these alleles as being “common” (having known frequencies) and 707 as being “well-documented” on the basis of ~140,000 sequence-based typing observations and available HLA haplotype data. Using these allele prevalence data, we have also assigned CWD status to specific G and P designations. We identified 147/151 G groups and 290/415 P groups as being CWD. The CWD catalogue will be updated on a regular basis moving forward, and will incorporate changes to the IMGT/HLA Database as well as empirical data from the histocompatibility and immunogenetics community. This version 2.0.0 of the CWD catalogue is available online at cwd.immunogenomics.org, and will be integrated into the Allele Frequencies Net Database, the IMGT/HLA Database and National Marrow Donor Program’s bioinformatics web pages.
Vaccination using cytotoxic T-lymphocyte (CTL) epitopes has become a widely used immunization strategy, especially because their structure makes them an attractive alternative to the delivery of whole proteins as immunogens. Nonetheless, their use is limited, in particular because of their specificity, being recognized only by cognate HLA alleles. The potential for immunizing a substantial portion of an ethnically diverse population using a modest number of peptides has been aided by the identification of HLA supertypes. However, the derivation of epitopes is often guided by methods that do not guarantee cross-reactivity, so we consider the feasibility of providing vaccine coverage to a multi-ethnic population under different assumptions. In particular, two large datasets are used to estimate the number of peptides needed to provide > or =90% group-specific coverage of a multiethnic population, when specificity is assumed to be either to a single serologic or molecular type. These assumptions are evaluated utilizing a clinically important epitope repertoire derived from two human cytomegalovirus proteins, and data on the in vitro memory response elicited by these peptides is presented. In summary, our combined theoretical and empiric studies suggest that 90% coverage of some ethnic groups is attainable with 11 uniquely defined HLA-restricted CTL epitopes. The derivation of four or more additional CTL epitopes is needed to attain 90% coverage of Blacks or Asians, the minimally covered groups. Ninety percent coverage of all major ethnic groups in a multi-ethnic population appears feasible without relying on cross-reactivity, but may require two to three times more CTL epitopes than estimated for serologic data, homogenous populations, or HLA alleles grouped as supertypes.
Haematopoietic cell transplantation (HCT) survivors are at increased risk for developing congestive heart failure (CHF), primarily due to pre-HCT exposure to anthracyclines. We examined the association between the development of CHF after HCT and polymorphisms in 16 candidate genes involved in anthracycline metabolism, iron homeostasis, anti-oxidant defence, and myocardial remodelling. A nested case-control study design was used. Cases (post-HCT CHF) were identified from 2,950 patients who underwent HCT between 1988 and 2007 at City of Hope and had survived ≥1 year. This cohort formed the sampling frame for selecting controls (without CHF) matched on: age, race/ethnicity, cumulative anthracycline exposure, stem cell source (allogeneic, autologous), and length of follow-up. Seventy-seven cases with pre-HCT germline DNA and 178 controls were genotyped. Multivariate analysis revealed that the odds of CHF was higher in females (Odds Ratio [OR]=2.9, p<0.01), individuals with pre-HCT chest radiation (OR=4.7, p=0.05), hypertension (OR=2.9, p=0.01), and with variants of genes coding for the NAD(P)H-oxidase subunit RAC2 (rs13058338, 7508T→A; OR=2.8, p<0.01), HFE (rs1799945, 63C→G; OR=2.5, p=0.05) or the doxorubicin efflux transporter ABCC2 (rs8187710, 1515G→A; OR=4.3, p<0.01). A combined (clinical and genetic) CHF predictive model performed better (area under the curve [AUC], 0.79) than the genetic (AUC=0.67) or the clinical (AUC=0.69) models alone.
Combination tacrolimus and sirolimus graft-versus-host disease (GVHD) prophylaxis for allogeneic transplant in patients conditioned with a fractionated total body irradiation-based regimen has shown encouraging results. We studied this prophylaxis combination in 85 patients receiving a matched-sibling transplant conditioned with 3 different regimens: fludarabine-melphalan (n ؍ 46); total body irradiation-etoposide (n ؍ 28), and busulfan-cyclophosphamide (n ؍ 11). The conditioning regimens were completed on day ؊4. Sirolimus and tacrolimus were started on day ؊3 to avoid overlap with conditioning therapy. All patients engrafted, with a median time to neutrophil engraftment of 15 days. The cumulative incidence of acute GVHD grades II to IV and III to IV was 43% and 19%, respectively, with no significant difference by conditioning regimen. The 2-year cumulative incidence of chronic GVHD was 46%. With a median follow-up of 26 months, disease-free survival was 58% and overall survival, 66%. The day-100 and 2-year nonrelapse mortality was 4.8% and 10.2%, respectively. The overall incidence of thrombotic microangiopathy was 19%, and it was significantly higher with busulfan/cyclophosphamide (55%, P ؍ .005). Tacrolimus plus sirolimus is an effective combination for acute GVHD prophylaxis and is associated with very low nonrelapse mortality. Thrombotic microangiopathy is a significant complication with this regimen, particularly in patients receiving busulfan/cyclophosphamide.
Increasing the upper age limit for recipients of hematopoietic stem cell transplantation (HCT) naturally has also increased the age of the corresponding related donor population. Because aging is a risk factor for malignancies, the risk of transferring preexisting malignant or premalignant hemopoietic clones in the process of HCT might be expected to increase as well. Anecdotal clinical cases of malignancies derived from donor cells in patients undergoing HCT have been published since 1971. In this article, we report 12 new cases that fit 2 different categories: (1) cases in which clones with characteristics of lymphohemopoietic malignancies were transferred from the donors to the recipients and (2) cases in which the malignant clone evolved from healthy donor cells once transplanted into the recipient. Donors in the first group were significantly older than donors in the second group. A more systematic examination of the prevalence and biology of donor malignancies would merit study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.