Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory.
Haematopoietic cell transplantation (HCT) survivors are at increased risk for developing congestive heart failure (CHF), primarily due to pre-HCT exposure to anthracyclines. We examined the association between the development of CHF after HCT and polymorphisms in 16 candidate genes involved in anthracycline metabolism, iron homeostasis, anti-oxidant defence, and myocardial remodelling. A nested case-control study design was used. Cases (post-HCT CHF) were identified from 2,950 patients who underwent HCT between 1988 and 2007 at City of Hope and had survived ≥1 year. This cohort formed the sampling frame for selecting controls (without CHF) matched on: age, race/ethnicity, cumulative anthracycline exposure, stem cell source (allogeneic, autologous), and length of follow-up. Seventy-seven cases with pre-HCT germline DNA and 178 controls were genotyped. Multivariate analysis revealed that the odds of CHF was higher in females (Odds Ratio [OR]=2.9, p<0.01), individuals with pre-HCT chest radiation (OR=4.7, p=0.05), hypertension (OR=2.9, p=0.01), and with variants of genes coding for the NAD(P)H-oxidase subunit RAC2 (rs13058338, 7508T→A; OR=2.8, p<0.01), HFE (rs1799945, 63C→G; OR=2.5, p=0.05) or the doxorubicin efflux transporter ABCC2 (rs8187710, 1515G→A; OR=4.3, p<0.01). A combined (clinical and genetic) CHF predictive model performed better (area under the curve [AUC], 0.79) than the genetic (AUC=0.67) or the clinical (AUC=0.69) models alone.
Multidrug resistance (MDR) is one of the main obstacles in tumor chemotherapy. A promising approach to solving this problem is to utilize a nontoxic and potent modulator able to reverse MDR, which in combination with anticancer drugs increases the anticancer effect. Experiments were carried out to examine the potential of tetrandrine (Tet) as a MDR-reversing agent. Survival of cells incubated with Tet at 2.5 micromol/l for 72 h was over 90%. Tet at 2.5 micromol/l almost completely reversed resistance to vincristine (VCR) in KBv200 cells. Tet at a concentration as low as 0.625 micromol/l produced a 7.6-fold reversal of MDR, but showed no effect on the sensitivity of drug-sensitive KB cells in vitro. In the KBv200 cell xenograft model in nude mice, neither Tet nor VCR inhibited tumor growth. However, VCR and Tet combined inhibited tumor growth by 45.7%, 61.2% and 55.7% in three independent experimental settings. In the KB cell xenograft model in nude mice, Tet did not inhibit tumor growth, but VCR and the combination of VCR and Tet inhibited tumor growth by 40.6% and 41.6%, respectively. Mechanism studies showed that Tet inhibited [(3)H]azidopine photoaffinity labeling of P-gp and increased accumulation of VCR in MDR KBv200 cells in a concentration-dependent manner. The results suggest that Tet is a potent MDR-reversing agent in vitro and in vivo. Its mechanism of action is via directly binding to P-gp and increasing intracellular VCR accumulation.
Hyaluronan (HA) produced by HAS3 is a ubiquitous component of the extracellular matrix and plays an active role in tissue remodeling. In addition, HA is known to reduce reactive oxygen species (ROS) -induced cardiac injury. The high cardiomyopathy risk associated with AA genotype could be due to inadequate remodeling and/or inadequate protection of the heart from ROS-mediated injury on high anthracycline exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.