The arrangement of atoms within a crystal and information on deviations from the ideal lattice is encoded in the diffraction pattern obtained from an appropriately conducted Bragg coherent diffraction imaging (BCDI) experiment. A foreknowledge of how specific displacements of atoms within the unit cell alter the BCDI diffraction pattern and the subsequent real-space image is often useful for interpretation and can provide valuable insight for materials design. Here we report on an atomistic approach to efficiently simulate BCDI diffraction patterns by factorising and eliminating certain redundancies in the conventional approach. Our method is able to reduce the computation time by several orders of magnitude without compromising the recovered phase information and therefore enables feasible atomistic simulations on nanoscale crystals with arbitrary lattice distortions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.