The Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated by a fixed interface Γ. This leads to two problems defined on the subdomains which are coupled through conditions expressing flux and pressure continuity at Γ. After an Euler implicit discretisation of the resulting nonlinear subproblems a linear iterative (L-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present numerical results that are in line with the theoretical finding, in particular the unconditional convergence of the scheme. We further compare the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while remaining comparable in computational time, even if no parallelisation is being adopted. Finally we present a parametric study that can be used to optimize the proposed scheme.
This article is a follow up of our submitted paper [11] in which a decomposition of the Richards equation along two soil layers was discussed. A decomposed problem was formulated and a decoupling and linearisation technique was presented to solve the problem in each time step in a fixed point type iteration. This article extends these ideas to the case of two-phase in porous media and the convergence of the proposed domain decomposition method is rigorously shown.
The viscous flow of two immiscible fluids in a porous medium on the Darcy scale is governed by a system of nonlinear parabolic equations. If infinite mobility of one phase can be assumed (e.g., in soil layers in contact with the atmosphere) the system can be substituted by the scalar Richards model. Thus, the porous medium domain may be partitioned into disjoint subdomains where either the full two-phase or the simplified Richards model dynamics are valid. Extending the previously considered one-model situations we suggest coupling conditions for this hybrid model approach. Based on an Euler implicit discretization, a linear iterative (L-type) domain decomposition scheme is proposed, and proved to be convergent. The theoretical findings are verified by a comparative numerical study that in particular confirms the efficiency of the hybrid ansatz as compared to full two-phase model computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.