We study the constraints of crossing symmetry and unitarity in general 3D Conformal Field Theories. In doing so we derive new results for conformal blocks appearing in four-point functions of scalars and present an efficient method for their computation in arbitrary space-time dimension. Comparing the resulting bounds on operator dimensions and OPE coefficients in 3D to known results, we find that the 3D Ising model lies at a corner point on the boundary of the allowed parameter space. We also derive general upper bounds on the dimensions of higher spin operators, relevant in the context of theories with weakly broken higher spin symmetries.
We take an analytic approach to the CFT bootstrap, studying the 4-pt correlators of d > 2 dimensional CFTs in an Eikonal-type limit, where the conformal cross ratios satisfy |u| |v| < 1. We prove that every CFT with a scalar operator φ must contain infinite sequences of operators O τ, with twist approaching τ → 2∆ φ + 2n for each integer n as → ∞. We show how the rate of approach is controlled by the twist and OPE coefficient of the leading twist operator in the φ × φ OPE, and we discuss SCFTs and the 3d Ising Model as examples. Additionally, we show that the OPE coefficients of other large spin operators appearing in the OPE are bounded as → ∞. We interpret these results as a statement about superhorizon locality in AdS for general CFTs.
We use the conformal bootstrap to perform a precision study of the operator spectrum of the critical 3d Ising model. We conjecture that the 3d Ising spectrum minimizes the central charge c in the space of unitary solutions to crossing symmetry. Because extremal solutions to crossing symmetry are uniquely determined, we are able to precisely reconstruct the first several Z 2 -even operator dimensions and their OPE coefficients. We observe that a sharp transition in the operator spectrum occurs at the 3d Ising dimension ∆ σ = 0.518154(15), and find strong numerical evidence that operators decouple from the spectrum as one approaches the 3d Ising point. We compare this behavior to the analogous situation in 2d, where the disappearance of operators can be understood in terms of degenerate Virasoro representations.
Abstract:We compute numerically the dimensions and OPE coefficients of several operators in the 3d Ising CFT, and then try to reverse-engineer the solution to crossing symmetry analytically. Our key tool is a set of new techniques for computing infinite sums of SL(2, R) conformal blocks. Using these techniques, we solve the lightcone bootstrap to all orders in an asymptotic expansion in large spin, and suggest a strategy for going beyond the large spin limit. We carry out the first steps of this strategy for the 3d Ising CFT, deriving analytic approximations for the dimensions and OPE coefficients of several infinite families of operators in terms of the initial data {∆ σ , ∆ , f σσ , f , c T }. The analytic results agree with numerics to high precision for about 100 low-twist operators (correctly accounting for O(1) mixing effects between large-spin families). Plugging these results back into the crossing equations, we obtain approximate analytic constraints on the initial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.