International audiencePeak-Force Quantitative Nano-Mechanical property mapping (PF-QNM) was applied to explore the nano-mechanical properties of flax fibre cell walls in cross-section. After validation of the ability of PF-QNM to determine stiffness gradients in aramid fibres, measurements were performed on developing flax bast fibres. The presence of two layers with different indentation moduli implies their progressive development during thickening of the secondary cell wall. Finally, measurements were carried out on technical flax fibre cell wall; but, in this case, no significant stiffness gradient could be identified in the secondary S 2 layer
Abstract:The development of flax (Linum usitatissimum L.) fibers was studied to obtain better insight on the progression of their high mechanical performances during plant growth. Fibers at two steps of plant development were studied, namely the end of the fast growth period and at plant maturity, each time at three plant heights. The indentation modulus of the fiber cell wall was characterized by atomic force microscopy (AFM) using peak-force quantitative nano-mechanical property mapping (PF-QNM). Changes in the cell wall modulus with the cell wall thickening were highlighted. For growing plants, fibers from top and middle heights show a loose inner Gn layer with a lower indentation modulus than mature fibers, which exhibit thickened homogeneous cell walls made only of a G layer. The influence of these changes in the fiber cell wall on the mechanical performances of extracted elementary fibers was also emphasized by tensile tests. In addition, Raman spectra were recorded on samples from both growing and mature plants. The results suggest that, for the fiber cell wall, the cellulose contribution increases with fiber maturity, leading to a greater cell wall modulus of flax fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.