We prove stability and convergence of a full discretization for a class of stochastic evolution equations with super-linearly growing operators appearing in the drift term. This is done by using the recently developed tamed Euler method, which employs a fully explicit time stepping, coupled with a Galerkin scheme for the spatial discretization.
We present a probabilistic analysis of the long-time behaviour of the nonlocal, diffusive equations with a gradient flow structure in 2-Wasserstein metric, namely, the Mean-Field Langevin Dynamics (MFLD). Our work is motivated by a desire to provide a theoretical underpinning for the convergence of stochastic gradient type algorithms widely used for non-convex learning tasks such as training of deep neural networks. The key insight is that the certain class of the finite dimensional non-convex problems becomes convex when lifted to infinite dimensional space of measures. We leverage this observation and show that the corresponding energy functional defined on the space of probability measures has a unique minimiser which can be characterised by a first order condition using the notion of linear functional derivative. Next, we show that the flow of marginal laws induced by the MFLD converges to the stationary distribution which is exactly the minimiser of the energy functional. We show that this convergence is exponential under conditions that are satisfied for highly regularised learning tasks. At the heart of our analysis is a pathwise perspective on Otto calculus used in gradient flow literature which is of independent interest. Our proof of convergence to stationary probability measure is novel and it relies on a generalisation of LaSalle's invariance principle. Importantly we do not assume that interaction potential of MFLD is of convolution type nor that has any particular symmetric structure. This is critical for applications. Finally, we show that the error between finite dimensional optimisation problem and its infinite dimensional limit is of order one over the number of parameters.
We prove the existence of weak solutions to McKean-Vlasov SDEs defined on a domain D ⊆ R d with continuous and unbounded coefficients under a Lyapunov-type condition. We do not require non-degeneracy of the diffusion coefficient. We work with a class of Lyapunov functions that depend on measures and we propose a new type of integrated Lyapunov condition. The main tool used in the proofs is the concept of a measure derivative due to Lions. An important consequence of having appropriate Lyapunov condition is that we can show existence of solutions to the McKean-Vlasov SDEs on [0, ∞). This leads to a probabilistic proof of existence a stationary solution to the nonlinear Fokker-Planck-Kolmogorov equation. Finally we prove uniqueness under an integrated condition based on a Lyapunov function. This extends the standard monotone-type condition for uniqueness.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.