Acyl-ghrelin (AG), desacyl-ghrelin (DAG) and obestatin are all derived from the same gene transcript; however their plasma levels do not necessarily change in parallel. The influence of these peptides towards the development of obesity and their direct effects on adipocyte physiology has not been thoroughly investigated. This study was designed to evaluate the direct effects of peptides of the ghrelin family on preadipocyte proliferation, differentiation and adipocyte lipid and glucose metabolism in 3T3-L1 cells. 3T3 cells were treated with physiological peptide concentrations for 1 h to 9 days, and the relevant assays measured. In preadipocytes, AG, GHRP-6 and DAG stimulated proliferation, measured as (3)H-thymidine incorporation (up to 200%, P < 0.05), while all peptides stimulated differentiation (up to 300%, P < 0.01) as compared to standard differentiation conditions. In adipocytes, FA uptake was increased in a concentration-dependent manner especially with obestatin (three- to fourfold, P < 0.001) and DAG (three- to fivefold, P < 0.001). By contrast, glucose transport was unchanged. DAG and obestatin significantly decreased lipolysis measured as non-esterified fatty acid and glycerol release by 50%, P < 0.05-0.01 and 51%, P < 0.01, respectively. Interestingly, DAG stimulation of FA uptake was blocked with GHSR1 antagonist (D-lys(3))-GHRP-6 (P < 0.05), phospholipase C inhibitor U73122 and phosphatidylinositol-3-kinase inhibitor wortmannin (P < 0.001). Finally, in omental but not subcutaneous human adipose tissue, GHSR1 correlated with BMI (r = 0.549, P < 0.05) and insulin (r = 0.681, P < 0.01). Taken together, these results suggest that ghrelin-related peptides may directly affect adipose tissue metabolism.
Background Primary ciliary dyskinesia (PCD) is typically an autosomal recessive disease characterized by recurrent infections of the lower respiratory tract, frequent and severe otitis media, chronic rhinosinusitis, neonatal respiratory distress, and organ laterality defects. While severe lower respiratory tract infections and bronchiectasis are common in Inuit, PCD has not been recognized in this population. Methods We report a case series of seven Inuit patients with PCD identified by genetic testing in three Canadian PCD centers. Results Patients ranged from 4 to 59 years of age (at time of last evaluation) and originated in the Qikiqtaaluk region (Baffin Island, n = 5), Nunavut, or Nunavik (northern Quebec, n = 2), Canada. They had typical features of PCD, including neonatal respiratory distress (five patients), situs inversus totalis (four patients), bronchiectasis (four patients), chronic atelectasis (six patients), and chronic otitis media (six patients). Most had chronic rhinitis. Genetic evaluation demonstrated that all had homozygous pathogenic variants in DNAH11 at NM_001277115.1:c.4095+2C>A. Conclusions The discovery of this homozygous DNAH11 variant in widely disparate parts of the Nunangat (Inuit homelands) suggests this is a founder mutation that may be widespread in Inuit. Thus, PCD may be an important cause of chronic lung, sinus, and middle ear disease in this population. Inuit with chronic lung disease, including bronchiectasis or laterality defects, should undergo genetic testing for PCD. Consideration of including PCD genetic analysis in routine newborn screening should be considered in Inuit regions.
The GH-releasing effect of AG is refractory to the inhibitory effect of SLB-induced beta-adrenergic receptor activation. Although further studies are needed to confirm these results during the lifespan and particularly during prolonged exposure to beta agonists, the present data clearly suggest that, among GH stimulatory tests, AG administration might be the most suitable in clinical conditions of chronic treatment with beta-2 agonists, such as in asthmatic disease.
Front Cover Caption: The cover image is based on the Original Article First reports of primary ciliary dyskinesia caused by a shared DNAH11 allele in Canadian Inuit by Julia Hunter‐Schouela et al., https://doi.org/10.1002/ppul.26414. Image Credit: Tom Kovesi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.