The sea-grass borer Zachsia zenkewitschi belongs to a group of economically and ecologically important bivalves, commonly referred to as shipworms. The sole recognized representative of the genus Zachsia, this species displays an unusual life history and reproductive strategy that is now understood to include: environmental sex determination of free swimming larvae, extreme sexual and size dimorphism between males and females, internal fertilization, maintenance of often large harems of male dwarfs within a specialized cavity of the female mantle, and complex maternal care of larvae in specialized brood pouches within the gill. It is also the only shipworm species known to burrow in sea grass rhizomes rather than terrestrial wood. Although Z. zenkewitschi is rare and little studied, understanding of its biology and anatomy has evolved substantially, rendering some aspects of its original description inaccurate. Moreover, no existing type specimens are known for this species. In light of these facts, we designate a neotype from among specimens recently collected at the type location, and undertake a re-description of this species, accounting for recent reinterpretation of its life history and functional anatomy.
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene is MK938300. The draft genome sequence was deposited under IMG Genome ID 2781125611. †These authors contributed equally to this work Two supplementary figures and two supplementary tables are available with the online version of this article.
Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, Bankia setacea (Teredinidae: Bivalvia). These strains, designated as Bs08T, Bs12T and Bsc2T, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus
Teredinibacter
. The three strains may be differentiated and distinguished from other previously described
Teredinibacter
species based on a combination of four characteristics: colony colour (Bs12T, purple; others beige to brown), marine salt requirement (Bs12T, Bsc2T and
Teredinibacter turnerae
strains), the capacity for nitrogen fixation (Bs08T and
T. turnerae
strains) and the ability to respire nitrate (Bs08T). Based on these findings, we propose the names Teredinibacter haidensis sp. nov. (type strain Bs08T=ATCC TSD-121T=KCTC 62964T), Teredinibacter purpureus sp. nov. (type strain Bs12T=ATCC TSD-122T=KCTC 62965T) and Teredinibacter franksiae sp. nov. (type strain Bsc2T=ATCC TSD-123T=KCTC 62966T).
Two new genera and two new species of black corals are recognized in the family Aphanipathidae. The new genus Anozopathes, with the species A. hawaiiensis sp. nov. and A. palauensis, sp. nov. is characterized by a sparsely and irregularly branched corallum with relatively long branches which can be straight, curved or crooked. The genus Aphanostichopathes, with the type species Cirripathes paucispina Brook, is characterized by an unbranched corallum with a long, curved stem with loose distal coils. Mitochondrial DNA data (nad5-IGR-nad1 for Anozopathes and cox3-cox1 for Aphanostichopathes) indicate that both taxa are related to the genera Aphanipathes, Phanopathes and Acanthopathes in the family Aphanipathidae, and morphologically they both share the characteristic of having spines with distinct conical tubercles. The two new species of Anozopathes are separated primarily by differences in colony growth form and in the size and shape of the skeletal spines. Species of Aphanostichopathes are separated primarily by differences in the size and shape of the spines and by size and density of the tubercles on the surface of the spines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.