Interactive facades are dynamic in the translation of space in architecture, especially in the aspects of aesthetics, sustainability, adaptation to the environment, and data relay through the medium of light, motion, and embedded technology. The design of interactive facades is complicated and it requires time and effort in the comprehension of the internal functions of the facade from the conceptual stage to occupancy. The existing process of modeling the experimental level of interactive facades through mock-up and prototype models demonstrate a fragmentary outline on which the final development of the interactive façade system is based on. This research aims to analyze the motion aspect of interactive facades design and simplify the conceptual and performance design process through parametric strategies using a multi-hybrid of parametric and simulation tools, such as Rhino Grasshopper, Ladybug, and Daysim, to create interactive facade designs that can verified in a virtual reality environment while generating performance outcomes that can be optimized in a holistic and improved efficient process.
Recently, as more and more projects on residential environment improvement in cities are actively carried out, the cases of demolishing or remodelling buildings has been increasing. Most of the target buildings for such projects are made of concrete. In order to reduce energy use as well as carbon emissions, the amount of concrete used as a building material should be reduced. This is because the concrete is the largest amount of construction waste, which the exact amount of concrete needs to be predicted. The architectural drawings are essential for the estimation and demolition of building waste, but the problem is that most of the old buildings' drawings do not exist. The 3D scanning process was performed to create the plans for such old buildings instead of the conventional method that is long time-consuming and labourintensive actual measurement. In this study, we scanned 40 old houses that were scheduled to be demolished. The result showed that the 3D scanned drawings' accuracy -99.2% -was higher than the ones measured by the conventional way. Through the algorithm developed in this study, the various processes of demolition, drawing measurement, and discarding quantity prediction can be solved in one process, thereby reducing work efficiently. And, considering the reliability of the research results, it is possible to reduce the economic loss by predicting the exact amount of waste in advance. After that, if the algorithm, developed in this study, can be further subdivided and supplemented to identify the materials for each part of the old buildings, it will be able to propose an efficient series of processes that distinguish between recyclable materials and wastes and thereby efficiently dispose of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.