Today's graphics processing units (GPU) have tremendous resources when it comes to raw computing power. The simulation of large groups of agents in transport simulation has a huge demand of computation time. Therefore it seems reasonable to try to harvest this computing power for traffic simulation. Unfortunately simulating a network of traffic is inherently connected with random memory access. This is not a domain that the SIMD (single instruction, multiple data) architecture of GPUs is known to work well with. In this paper the authors will try to achieve a speedup by computing multi-agent traffic simulations on the graphics device using NVIDIA's CUDA framework.
Today's graphics processing units (GPU) have tremendous resources when it comes to raw computing power. The simulation of large groups of agents in transport simulation has a huge demand of computation time. Therefore it seems reasonable to try to harvest this computing power for traffic simulation. Unfortunately simulating a network of traffic is inherently connected with random memory access. This is not a domain that the SIMD (single instruction, multiple data) architecture of GPUs is known to work well with. In this paper the authors will try to achieve a speedup by computing multi-agent traffic simulations on the graphics device using NVIDIAs CUDA framework.
This paper provides an introduction to multi-agent traffic simulation. Metropolitan regions can consist of several million inhabitants, implying the simulation of several million travelers, which represents a considerable computational challenge. We reports on our recent case study of a real-world Berlin scenario. The paper explains computational techniques necessary to achieve results. It turns out that the difficulties there, because of data availability and because of the special situation of Berlin after the re-unification, are considerably larger than in previous scenarios that we have treated.
This paper provides an introduction to multiagent traffic simulation. It includes some description of where we are with respect to the implementation of a real-world Berlin scenario. It turns out that the difficulties there, because of data availability and because of the special situation of Berlin after the reunification, are considerably larger than in previous scenarios that we have treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.