One way to support the development of new safety practices in testing and field failure situations of electric vehicles and their lithium-ion (Li-ion) traction batteries is to conduct studies simulating plausible incident scenarios. This paper focuses on risks and hazards associated with venting of gaseous species formed by thermal decomposition reactions of the electrolyte and electrode materials during thermal runaway of the cell. A test set-up for qualitative and quantitative measurements of both major and minor gas species in the vented emissions from Li-ion batteries is described. The objective of the study is to measure gas emissions in the absence of flames, since gassing can occur without subsequent fire. Test results regarding gas emission rates, total gas emission volumes, and amounts of hydrogen fluoride (HF) and CO2 formed in inert atmosphere when heating lithium iron phosphate (LFP) and lithium nickel-manganese-cobalt (NMC) dioxide/lithium manganese oxide (LMO) spinel cell stacks are presented and discussed. Important test findings include the large difference in total gas emissions from NMC/LMO cells compared to LFP, 780 L kg−1 battery cells, and 42 L kg−1 battery cells, respectively. However, there was no significant difference in the total amount of HF formed for both cell types, suggesting that LFP releases higher concentrations of HF than NMC/LMO cells.
Objective: The purpose of this study was to investigate the effects of abuse conditions, including realistic crash scenarios, on Li ion battery systems in E-vehicles in order to develop safe practices and priorities when responding to accidents involving E-vehicles.Method: External fire tests using a single burning item equipment were performed on commercial Li ion battery cells and battery packs for electric vehicle (E-vehicle) application. The 2 most common battery cell technologies were tested: Lithium iron phosphate (LFP) and mixed transition metal oxide (lithium nickel manganese cobalt oxide, NMC) cathodes against graphite anodes, respectively. The cell types investigated were "pouch" cells, with similar physical dimensions, but the NMC cells have double the electric capacity of the LFP cells due to the higher energy density of the NMC chemistry, 7 and 14 Ah, respectively.Heat release rate (HRR) data and concentrations of toxic gases were acquired by oxygen consumption calorimetry and Fourier transform infrared spectroscopy (FTIR), respectively.Results: The test results indicate that the state of charge (SOC) affects the HRR as well as the amount of toxic hydrogen fluoride (HF) gas formed during combustion. A larger number of cells increases the amount of HF formed per cell. There are significant differences in response to the fire exposure between the NMC and LFP cells in this study. The LFP cells generate a lot more HF per cell, but the overall reactivity of the NMC cells is higher. However, the total energy released by both batteries during combustion was independent of SOC, which indicates that the electric energy content of the test object contributes to the activation energy of the thermal and heat release process, whereas the chemical energy stored in the materials is the main source of thermal energy in the batteries. Conclusions:The results imply that it is difficult to draw conclusions about higher order system behavior with respect to HF emissions based on data from tests on single cells or small assemblies of cells. This applies to energy release rates as well. The present data show that mass and shielding effects between cells in multicell assemblies affect the propagation of a thermal event.
Das europäische Batterieprojekt Ostler -Optimised Storage Integration for the Electric Car -hat unter der Führung von Mira die Sicherheit von Lithium-Ionen-Akkumulatoren beim Fahrzeugcrash untersucht. Die Projektpartner fka, ika und Autoliv zeigen hier auf, wie sich der Energiespeicher in den virtuellen Entwicklungsprozess einbinden und durch aktive, aufblasbare Elemente beim seitlichen Euro-NCAP-Pfahlaufprall schützen lässt.TITELTHEMA SICHERHEIT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.