Model predictive control (MPC) is a promising alternative in building control with the potential to improve energy efficiency and comfort and to enable demand response capabilities. Creating an accurate building model that is simple enough to allow the resulting MPC problem to be tractable is a challenging but crucial task in the control development.In this paper we introduce the Building Resistance-Capacitance Modeling (BRCM) Matlab Toolbox that facilitates the physical modeling of buildings for MPC. The Toolbox provides a means for the fast generation of (bi-)linear resistance-capacitance type models from basic building geometry, construction and systems data. Moreover, it supports the generation of the corresponding potentially time-varying costs and constraints. The Toolbox is based on previously validated modeling principles. In a case study a BRCM model was automatically generated from an EnergyPlus input data file and its predictive capabilities were compared to the EnergyPlus model. The Toolbox itself, the details of the modeling and the documentation can be found at www.brcm.ethz.ch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.