Purpose: Real-time high soft-tissue contrast magnetic resonance imaging (MRI) from the MR-Linac offers the best opportunity for accurate motion tracking during radiation therapy delivery via highfrequency two-dimensional (2D) cine imaging. This work investigates the efficacy of real-time organ motion tracking based on the registration of MRI acquired on MR-Linac. Methods: Algorithms based on image intensity were developed to determine the three-dimensional (3D) translation of abdominal targets. 2D and 3D abdominal MRIs were acquired for 10 healthy volunteers using a high-field MR-Linac. For each volunteer, 3D respiration-gated T2 and 2D T2/T1weighted cine in sagittal, coronal, and axial planes with a planar temporal resolution of 0.6 for 60 s was captured. Datasets were also collected on MR-compatible physical and virtual four-dimensional (4D) motion phantoms. Target contours for the liver and pancreas from the 3D T2 were populated to the cine and assumed as the ground-truth motion. We performed image registration using a research software to track the target 3D motion. Standard deviations of the error (SDE) between the groundtruth and tracking were analyzed. Results: Algorithms using a research software were demonstrated to be capable of tracking arbitrary targets in the abdomen at 5 Hz with an overall accuracy of 0.6 mm in phantom studies and 2.1 mm in volunteers. However, this value is subject to patient-specific considerations, namely motion amplitude. Calculation times of < 50 ms provide a pathway of real-time motion tracking integration. A major challenge in using 2D cine MRI to track the target is handling the full 3D motion of the target. Conclusions: Feasibility to track organ motion using intensity-based registration of MRIs was demonstrated for abdominal targets. Tracking accuracy of about 2 mm was achieved for the motion of the liver and pancreatic head for typical patient motion. Further development is ongoing to improve the tracking algorithm for large and complex motions.
Large intrafractional organ motion due to respiratory and/or bowel motion is a limiting factor in administering curative radiation doses to pancreatic tumors. The authors investigate the use of real-time ultrasound to track pancreas motion. Due to the poor visibility of the pancreas head on an ultrasound image, the portal vein is identified as a surrogate. The authors have demonstrated the feasibility of tracking HP motion through the localization of the PV using TAUS. This will potentially allow real-time tracking of intrafractional motion to justify small PTV-margins and to account for unusual motions, thus, improving normal tissue sparing.
The feasibility of real-time lung tumor motion tracking in SI direction with continuous ultrasound and periodic CBPI was demonstrated. The real-time estimation of the target position from the two streams for lung cancer patients would enable respiration gating or tracking during SBRT.
BackgroundEmerging hypofractionated prostate radiotherapy regimens require solutions for accurate target tracking during beam delivery. The goal of this study is to evaluate the performance of the Clarity ultrasound monitoring system for prostate motion tracking.MethodsFive prostate patients underwent continuous perineum ultrasound imaging during their daily treatments. Initial absolute 3D positions of fiducials implanted in the prostate were estimated from the KV images. Fiducial positions in MV images acquired during beam delivery were compared with predicted positions based on Clarity 3D tracking. The uncertainty in the comparison results was evaluated in a phantom validation study.ResultsContinuous real-time ultrasound motion tracking was recorded in 5 patients and 167 fractions for overall of 39.7 h. Phantom validation of the proposed procedure demonstrated that predicted and observed fiducial positions agree within 1.1 mm. In patients agreement between predicted and actual fiducial positions varied between 1.3 mm and 3.3 mm. On average ultrasound tracking reduced the maximum localization error in patients by 20% on average. With the motion corrected, the duration prostate beyond 1 mm from its initial treatment position can be reduced from 37 to 22% of the total treatment time.ConclusionReal-time ultrasound tracking reduces uncertainty in prostate position due to intra-fractional motion.Trial registrationIRB Protocol #27372. Date of registration of trial: 12/17/2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.