Geometric perturbation theory is universally needed but not recognized as such yet. A typical example is provided by the three-dimensional wave equation, widely used in acoustics. We face vibrating eardrums as binaural auditory input and stemming from an external sound source. In the setup of internally coupled ears (ICE), which are present in more than half of the land-living vertebrates, the two tympana are coupled by an internal air-filled cavity, whose geometry determines the acoustic properties of the ICE system. The eardrums themselves are described by a two-dimensional, damped, wave equation and are part of the spatial boundary conditions of the threedimensional Laplacian belonging to the wave equation in the internal cavity that couples and internally drives the eardrums. In animals with ICE the resulting signal is the superposition of external sound arriving at both eardrums and the internal pressure coupling them. This is also the typical setup for geometric perturbation theory. In the context of ICE it boils down to acoustic boundary-condition dynamics (ABCD) for the coupled dynamical system of eardrums and internal cavity. In acoustics the deviations from equilibrium are extremely small (nm range). Perturbation theory therefore seems natural and is shown to be appropriate. In doing so, we use a time-dependent perturbation theoryà la Dirac in the context of Duhamel's principle. The relaxation dynamics of the tympanic-membrane system, which neuronal information processing stems from, is explicitly obtained in first order. Furthermore, both the initial and the quasi-stationary asymptotic state
Whereas for smaller animals the eardrums are well-characterized as excitable membranes or drums, some animals such as several archosaurs feature, as a first approximation, a rather stiff elastic shell supported by an elastic ring. Mathematically, the theory of plates and shells is applicable but its governing equations overly complicate the modeling. Here the notion of tympanic structure is introduced as a generalization of "ordinary" tympanic membranes so as to account for sound perception as it occurs in archosaurs, such as birds and crocodilians. A mathematical model for the tympanic structure in many archosaurs called two-spring model implements this notion. The model is exactly soluble and solutions are presented in closed form and as a series expansion. Special emphasis is put onto offering an easy-to-apply model for describing experiments and performing numerical studies. The analytic treatment is supplemented by a discussion of the applicability of the two-spring model in auditory research. An elasticity-theoretic perspective of the two-spring model is given in the Appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.