Core-expanded pyrenes exhibit rainbow solvatochromism, reversible acidochromism in both solution and solid-state, and reversible crystal-to-crystal mechanochromism all governed by substitution pattern.
Herein we present a clarification of the ambiguous persistence of the 10-methyl-9-phenylacridanyl, 9-phenylxanthenyl, and 9-phenylthioxanthenyl radicals in electrochemical experiments. Each of these radicals has separately been the subject of conflicting literature results for decades with publications claiming both their chemical inertness and propensity to dimerize. We assert that each radical is persistent at conventional electrochemical time scales up to several minutes based on reversible redox couples and cyclic voltammogram simulations of the radicals and their respective cations. All three radicals are rapidly consumed by aerial O, which lends irreversibility to the redox couples after fewer than 20 s of exposure to air. With appreciation for the O sensitivity of these radicals, their electrochemically generated UV-visible absorption spectra have been acquired and matched to predictions made by TD-DFT calculations. Further, we propose that previous claims to have electrochemically measured radical-radical dimerizations have only observed reaction of these radicals with dissolved O.
Saddle-shaped 21,23-dithiadiacenaphtho[1,2-c]porphyrin exhibits binding interaction with [60]fullerene in addition to photon absorption bands extending to 1000 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.