Changes to the electroencephalogram (EEG) observed during general anesthesia are modeled with a physiological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known anatomical constraints and predict mean firing rates and power spectra typically encountered in human subjects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the prediction of a range of quantitative EEG variables. More than 70,000 plausible parameter sets are finally selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane. Thereby 86 parameter sets are identified that exhibit a strong "biphasic" rise in total power, a feature often observed in experiments. A sensitivity study suggests that this "biphasic" behavior is distinguishable even at low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an outlook on future fits to experimental data is provided.
Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.
There is some complementarity of models for the origin of the electroencephalogram (EEG) and neural network models for information storage in brainlike systems. From the EEG models of Freeman, of Nunez, and of the authors' group we argue that the wavelike processes revealed in the EEG exhibit linear and near-equilibrium dynamics at macroscopic scale, despite extremely nonlinear – probably chaotic – dynamics at microscopic scale. Simulations of cortical neuronal interactions at global and microscopic scales are then presented. The simulations depend on anatomical and physiological estimates of synaptic densities, coupling symmetries, synaptic gain, dendritic time constants, and axonal delays. It is shown that the frequency content, wave velocities, frequency/wavenumber spectra and response to cortical activation of the electrocorticogram (ECoG) can be reproduced by a “lumped” simulation treating small cortical areas as single-function units. The corresponding cellular neural network simulation has properties that include those of attractor neural networks proposed by Amit and by Parisi. Within the simulations at both scales, sharp transitions occur between low and high cell firing rates. These transitions may form a basis for neural interactions across scale. To maintain overall cortical dynamics in the normal low firing-rate range, interactions between the cortex and the subcortical systems are required to prevent runaway global excitation. Thus, the interaction of cortex and subcortex via corticostriatal and related pathways may partly regulate global dynamics by a principle analogous to adiabatic control of artificial neural networks.
Neurophysiological recordings are dominated by arhythmical activity whose spectra can be characterised by power-law functions, and on this basis are often referred to as reflecting scale-free brain dynamics (1/f). Relatively little is known regarding the neural generators and temporal dynamics of this arhythmical behaviour compared to rhythmical behaviour. Here we used Irregularly Resampled AutoSpectral Analysis (IRASA) to quantify β, in both the high (5-100 Hz, β) and low frequency bands (0.1-2.5 Hz, β) in MEG/EEG/ECoG recordings and to separate arhythmical from rhythmical modes of activity, such as, alpha rhythms. In MEG/EEG/ECoG data, we demonstrate that oscillatory alpha power dynamically correlates over time with β and similarly, participants with higher rhythmical alpha power have higher β. In a series of pharmaco-MEG investigations using the GABA reuptake inhibitor tiagabine, the glutamatergic AMPA receptor antagonist perampanel, the NMDA receptor antagonist ketamine and the mixed partial serotonergic agonist LSD, a variety of effects on both β and β were observed. Additionally, strong modulations of β were seen in monkey ECoG data during general anaesthesia using propofol and ketamine. We develop and test a unifying model which can explain, the 1/f nature of electrophysiological spectra, their dynamic interaction with oscillatory rhythms as well as the sensitivity of 1/f activity to drug interventions by considering electrophysiological spectra as being generated by a collection of stochastically perturbed damped oscillators having a distribution of relaxation rates.
A set of nonlinear continuum field equations is presented which describes the dynamics of neural activity in cortex. These take into account the most pertinent anatomical and physiological features found in cortex with all parameter values obtainable from independent experiment. Derivation of a white noise fluctuation spectrum from a linearized set of equations shows the presence of strong resonances that correspond to electroencephalographically observed 0.3-4 Hz (mammalian delta), 4-8 Hz (mammalian theta), 8-13 Hz (mammalian alpha) and >13 Hz (mammalian beta) activity. Numerical solutions of a full set of one-dimensional nonlinear equations include properties analogous to cortical evoked potentials, travelling waves at experimentally observed velocities, threshold type spike activity and limit cycle, chaotic and noise driven oscillations at the frequency of the mammalian alpha rhythm. All these types of behaviour are generated with parameters that are within ranges reported experimentally. The strong dependence of the phenomena observed on inhibitory-inhibitory interactions is demonstrated. These results suggest that the classically described alpha may be instantiated in a number of qualitatively distinct dynamical regimes, all of which depend on the integrity of inhibitoryinhibitory population interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.