The migratory pathway of Naegleria fowleri from the nasal submucosa to the central nervous system (CNS) during the early stage of primary amebic meningoencephalitis (PAM) was investigated in mice. Twenty-one-day-old CD-1 mice were inoculated by intranasal instillation of 1 x 10(6) amebas. Animals were divided into 3 groups of 5 and, after being anesthetized, were killed at intervals of 24, 32, and 48 hr postinoculation by transcardial perfusion with formaldehyde, acetic acid, and methanol. The heads were decalcified, divided in the midsagittal plane, and the area of the cribriform plate removed and embedded in paraffin. Serial sections were cut at 8 microm and stained with a combination of celestin blue, Harris' hematoxylin, and acid fuchsin for light microscopy. Focal inflammation and amebas were observed in the submucosal nerve plexus, olfactory nerves penetrating the cribriform plate, and the olfactory bulb of the brain as early as 24 hr postinoculation. The time periods selected assured that the disease process would not obliterate soft tissue structures. Earlier studies used moribund mice in which the inflammation and the number of amebas were overwhelming. The present study provides convincing evidence that amebas gain initial access to the CNS through olfactory nerves within the cribriform plate during the early stages of PAM.
Amebae of Naegleria fowleri and Naegleria gruberi were cytopathic for nine established mammalian cell cultures, including mouse and human fibroblasts, rabbit and monkey kidney cells, rat and mouse neuroblastoma cells, baby hamster kidney cells, and human epithelioma and carcinoma cells. Nine strains of N. fowleri were equally cytopathic for rodent neuroblastoma cells. As few as one ameba per million neuroblastoma cells destroyed the mammalian target cells after 9 days. The N. fowleri grew and destroyed rat neuroblastoma cells at 30 to 37 C whereas N. gruberi grew and destroyed the target cells at 25 to 30 C. Both N. fowleri and N. gruberi attached efficiently to the target cells at 30 to 37 C; N. gruberi but not N. fowleri attached efficiently at 25 C. Electron microscopic observations of mixed cultures of N. fowleri and neuroblastoma cells established that the amebae, after 12 hr, had ingested portions of the neuroblastoma target cells without causing cell lysis. Conversely, N. gruberi amebae, after attaching to target cells, disrupted the plasma membrane and cytoplasm of the target cells although the target cell nucleus remained intact. The amebae then ingested the target cell debris.
The migratory pathway of Naegleria fowleri from the nasal submucosa to the central nervous system (CNS) during the early stage of primary amebic meningoencephalitis (PAM) was investigated in mice. Twenty-one-day-old CD-1 mice were inoculated by intranasal instillation of 1 x 10(6) amebas. Animals were divided into 3 groups of 5 and, after being anesthetized, were killed at intervals of 24, 32, and 48 hr postinoculation by transcardial perfusion with formaldehyde, acetic acid, and methanol. The heads were decalcified, divided in the midsagittal plane, and the area of the cribriform plate removed and embedded in paraffin. Serial sections were cut at 8 microm and stained with a combination of celestin blue, Harris' hematoxylin, and acid fuchsin for light microscopy. Focal inflammation and amebas were observed in the submucosal nerve plexus, olfactory nerves penetrating the cribriform plate, and the olfactory bulb of the brain as early as 24 hr postinoculation. The time periods selected assured that the disease process would not obliterate soft tissue structures. Earlier studies used moribund mice in which the inflammation and the number of amebas were overwhelming. The present study provides convincing evidence that amebas gain initial access to the CNS through olfactory nerves within the cribriform plate during the early stages of PAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.