Tungsten isotopes are the ideal tracers of core-mantle chemical interaction. Given that W is moderately siderophile, it preferentially partitioned into the Earth's core during its segregation, leaving the mantle depleted in this element. In contrast, Hf is lithophile, and its short-lived radioactive isotope 182 Hf decayed entirely to 182 W in the mantle after metal-silicate segregation. Therefore, the 182 W isotopic composition of the Earth's mantle and its core are expected to differ by about 200 ppm. Here, we report new high precision W isotope data for mantle-derived rock samples from the Paleoarchean Pilbara Craton, and the Réunion Island and the Kerguelen Archipelago hotspots. Together with other available data, they reveal a temporal shift in the 182 W isotopic composition of the mantle that is best explained by core-mantle chemical interaction. Core-mantle exchange might be facilitated by diffusive isotope exchange at the core-mantle boundary, or the exsolution of W-rich, Si-Mg-Fe oxides from the core into the mantle. Tungsten-182 isotope compositions of mantle-derived magmas are similar from 4.3 to 2.7 Ga and decrease afterwards. This change could be related to the onset of the crystallisation of the inner core or to the initiation of post-Archean deep slab subduction that more efficiently mixed the mantle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.