The relative lack of sensitive and clinically valid tests of rodent behavior might be one of the reasons for the limited success of the clinical translation of preclinical Alzheimer's disease (AD) research findings. There is a general interest in innovative behavioral methodology, and protocols have been proposed for touchscreen operant chambers that might be superior to existing cognitive assessment methods. We assessed and analyzed touchscreen performance in several novel ways to examine the possible occurrence of early signs of prefrontal (PFC) functional decline in the APP/PS1 mouse model of AD. Touchscreen learning performance was compared between APP/PS1‐21 mice and wildtype littermates on a C57BL/6J background at 3, 6 and 12 months of age in parallel to the assessment of spatial learning, memory and cognitive flexibility in the Morris water maze (MWM). We found that older mice generally needed more training sessions to complete the touchscreen protocol than younger ones. Older mice also displayed defects in MWM working memory performance, but touchscreen protocols detected functional changes beginning at 3 months of age. Histological changes in PFC of APP/PS1 mice indeed occurred as early as 3 months. Our results suggest that touchscreen operant protocols are more sensitive to PFC dysfunction, which is of relevance to the use of these tasks and devices in preclinical AD research and experimental pharmacology.
Muscarinic antagonist scopolamine has been extensively used to model amnesia in lab rodents, but most studies have focused on the effects of pre-training scopolamine administration. Here, we examined post-training scopolamine administration in C57BL/6JRj mice. Learning was assessed in three different procedures: odor discrimination in a digging paradigm, visual discrimination in a touchscreen-based setup, and spatial learning in the Morris water maze. Scopolamine administration affected performance in the odor discrimination task. More specifically, scopolamine decreased perseverance, which facilitated reversal learning. Similar results were obtained in the visual discrimination task, but scopolamine did not affect performance in the spatial learning task. It is unlikely that these results can be explained by non-memory-related cognitive effects (e.g., attention), non-cognitive behaviours (e.g., locomotor activity) or peripheral side-effects (e.g., mydriasis). They likely relate to the various neuropharmacological actions of scopolamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.