ARTICLE INFO ABSTRACT
Keywords:Residential PV system Energy production Performance ratio Performance Índex PI BelgiumThe main objective of this paper is to review the state of the art of residential PV systems in Belgium by the analysis of the operational data of 993 installations. For that, three main questions are posed: how much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? This work brings answers to these questions. A middling commercial PV system, optimally oriented, produces a mean annual energy of 892 l
ARTICLE INFO ABSTRACT
Keywords:Residential PV system Energy production Performance Ratio Performance Index CIS HIT PI FranceThe main objective of this paper is to review the state of the art of residential PV systems in France. This is done analyzing the operational data of 6868 installations. Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kW p . As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% and the mean Performance Index is 85%. That is to say, the energy produced by a typical PV system in France is 15% inferior to the energy produced by a very high quality PV system. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer's datasheet. A brief analysis by PV modules technology has led to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with heterojunction with intrinsic thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with the copper indium (di)selenide (CIS) modules show a real power that is 16% lower than their nominal valué.
Photovoltaic (PV) energy generation plays a crucial role in the energy transition. Small-scale, rooftop PV installations are deployed at an unprecedented pace, and their safe integration into the grid requires up-to-date, high-quality information. Overhead imagery is increasingly being used to improve the knowledge of rooftop PV installations with machine learning models capable of automatically mapping these installations. However, these models cannot be reliably transferred from one region or imagery source to another without incurring a decrease in accuracy. To address this issue, known as distribution shift, and foster the development of PV array mapping pipelines, we propose a dataset containing aerial images, segmentation masks, and installation metadata (i.e., technical characteristics). We provide installation metadata for more than 28000 installations. We supply ground truth segmentation masks for 13000 installations, including 7000 with annotations for two different image providers. Finally, we provide installation metadata that matches the annotation for more than 8000 installations. Dataset applications include end-to-end PV registry construction, robust PV installations mapping, and analysis of crowdsourced datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.